Cho đa thức \(N=ax^2+bx+c\) và \(13a+b+2c=0\)
CM \(N\left(-2\right).N\left(3\right)\le0\)
Gợi ý: Dựa vào 13a + b + 2c = 0 để tính c theo a và b, rồi thế vào N(-2) và N(3), nhân lại ta được DPCM
Cho đa thức f(x)= ax2+bx+c biết 13a+b+2c=0. CMR \(f\left(-2\right)\times f\left(3\right)\le0\)
Cho \(f\left(x\right)=ax^2+bx+c\) (a ,b,c là các số thực )
a) Biết 10a+2b-5c=0 . Chứng minh\(f\left(-1\right).f\left(-4\right)\ge0\)
b) Biết 13a + b + 2c=0 . Chứng minh \(f\left(-2\right).f\left(3\right)\le0\)
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
cho \(f\left(x\right)=ax^2+bx+c\) với a,b,c là các số thỏa mãn 13a+b+2c=0. chứng tỏ rằng \(f\left(-2\right).f\left(3\right)\le0\)
\(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=0\)
Tích 2 số đối nhau bé hơn hoặc bằng 0
=>dpcm 😀
nhờ bạn giúp mình giải bài với....!
Cho tam giác ABC nhọn (AB<AC). Các đường cao AE,BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng vuông góc với HM , a cắt AB,AC lần lượt tại I,K. gọi G là giao điểm cuarCH và AB. chứng minh:\(\frac{AH}{HE}+\frac{BH}{HF}+\frac{CH}{HG}< 6\)
giúp mình với nha! càng nhanh càng tốt bạn nhé! cảm ơn trước vậy.....
Cho đa thức: \(f\left(x\right)=ax^2+bx+c\).
Chứng tỏ: \(f\left(-2\right)\times f\left(3\right)\le0\)
biết \(13a+b+2c=0\)
Giúp mk nha!!!Cảm ơn nhiều!!!
Ta có \(f\left(-2\right)\times f\left(-3\right)=\left(4a-2b+c\right).\left(9a+3b+c\right)=\left(4a-2b+c\right).\left[13a+b+2c-\left(4a-2b+c\right)\right]\)
Mà \(13a+b+2c=0\) theo giả thiết.
\(\Rightarrow f\left(-2\right)\times f\left(3\right)=-\left[\left(4a-2b+c\right)^2\right]\)
\(\left(4a-2b+c\right)^2\) luôn \(\ge0\Rightarrow f\left(-2\right)\times f\left(3\right)\) \(\le0\)
Cho f(x) = ax2 + bx + c với a, b, c là các số hữu tỉ. CMR: \(f\left(-2\right).f\left(3\right)\le0\)
biết rằng 13a + b + 2c = 0
Ta có \(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)
\(=36a^2-6b^2+c^2-6ab+13ac+bc\)
Thay b = - 13a - 2c, ta có
\(36a^2-6\left(-13a-2c\right)^2+c^2-6a\left(-13a-2c\right)+13ac+\left(-13a-2c\right)c\)
\(=-900a^2-300ac-25c^2=-25\left(36a^2+12ac+c^2\right)\)
\(-25\left(6a+c\right)^2\le0\forall a;c\)
Vậy nên \(f\left(-2\right).f\left(3\right)\le0\)
Cách này đơn giản hơn: Có \(f\left(-2\right)=4a-2b+c;f\left(3\right)=9a+3b+c\)
Do đó \(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\) (theo giả thiết). Từ đó \(f\left(-2\right)=-f\left(3\right)\) nên
\(f\left(-2\right)f\left(3\right)=-f^2\left(3\right)\le0\)
a) Cho \(f(x)=ax^2+bx+c \) với a, b, c là các số hữu tỉ.
Chứng minh rằng \(f\left(-2\right).f\left(3\right)\le0\).Biết rằng \(13a+b+2c=0\)
b) Tìm giá trị nguyên của x để biểu thức \(A=\frac{2}{6-x}\)có giá trị lớn nhất
cho \(f\left(x\right)=ax^2+bx+c\) với a,b,c là các số hữu tỉ. Biết \(13a+b+2c=0\). Chứng tỏ rằng \(f\left(-2\right)\cdot f\left(3\right)\le0\)
Cho đa thức f(x)=ax2 + bx + c. Biết f(-2) + f(3) = 0. Khẳng định nào đúng:
A. 13a+5b+2c=0 B. 5a+5b=0
C. 5a+b+2c=0 D. 13a+b+2c=0
Bn nào giải đc cho xin cách làm luôn nha!!!!
f(-2)=4a-2b+c
f(3)=9a+3b+c
\(\Rightarrow\)f(-2)+f(3)=13a+b+2c=0
chon đáp án D
Cho \(f\left(x\right)=ax^2+bx+c\) với a,b,c là số hữu tỉ. Chứng tỏ rằng : f(-2) . (f3)\(\le0\)Biết 13a+b+2c=0
\(f\left(x\right)=ax^2+bx+c\)
Ta có : \(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)
\(=13a+b+c\)
\(=0\)
\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)
\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)
\(\Rightarrow\) \(đpcm\)
Study well ! >_<
f(-2)=\(4a-2b+c\)(1)
f(3)=\(9a+3b+c\)(2)
Lấy (1)+(2) ta được f(-2)+f(3)=13a+b+2c=0
Vì f(-2) và f(3) trái dấu
Suy ra f(-2)=-f(3)
Suy ra f(-2).f(3)=-f(3).f(3)=\(-\left(f^2\left(c\right)\right)\)\(\le\)0(đpcm)