Tìm PS tối giản \(\frac{m}{n}\), biết rằng PS \(\frac{m+n}{n}\)gấp 7 lần PS \(\frac{m}{n}\)
cho m,n la các số tự nhiên thỏa mãn PS:\(\frac{m}{n}\) tối giản và PS: \(\frac{4m+3n}{5m+2n}\)không tối giản . Tìm UCLN của 4m+3n và 5m+2n
tìm n nhỏ nhất (n thuộc N)để các PS sau tối giản
\(\frac{5}{n+8};\frac{6}{n+9};\frac{7}{n+10};\frac{17}{n+20}\)
Ta thấy các phân số đã cho có dạng :
\(\frac{5}{5}+(n+3);\frac{6}{6}(n+3);...;\frac{17}{17}(n+3)\)
Tức là có dạng \(\frac{a}{a}+(n+3)\)
Để các phân số đã cho tối giản thì a và n + 3 phải nguyên tố cùng nhau
n + 3 phải nhỏ nhất và nguyên tố cùng nhau với các số 5;6;7;...;17
n + 3 phải là số nguyên tố nhỏ nhất lớn hơn 17
n + 3 = 19
=> n = 16
Vậy n = 16
Cho ps P=\(\frac{n-3}{2n-5}\)(n\(\inℤ\)) CMR ps P tối giản
Tìm các giá trị của n để P tối giản
C/m rằng với PS 16n+3/12n+2 là PS tối giản với mọi n thuộc N
chứng tỏ rằng mọi ps có dạng \(\frac{n}{n+1}\)với n\(\in\)N* DỀU LÀ PS TỐI GIẢN
thj` các phân số có tử và mẫu liền nhau thj` đều là p/s tối giản, mk trả lời lih tih ko bít đúng ko nữa.!!!!
Vì ƯCLN(n;n+1)=1 hay n và n+1 nguyên tố cùng nhau nên phân số \(\frac{n}{n+1}\)là phân số tối giản.
Cái này là định nghĩa việc gì phải chứng minh
Định nghĩa:
Mọi phân số có tử và mẫu là hai số nguyên tố cùng nhau thì là nhân số tối giản
Vì ƯCLN(n;n+1)=1 nên n và n+1 nguyên tố cùng nhau => đpcm
Cho: \(A=\frac{-3}{n+2}\)
a)Tìm số nguyên n để A là phân số tối giản? ( PS tối giản hay là PS không rút gọn được nữa là PS mà tử và mẫu chỉ có ước chung là 1 và -1)
b) Tìm số nguyên n để A là phân số rút gọn được?
c) Tìm số nguyên n để A là số nguyên tố
Chứng minh rằng \(\frac{n+1}{2n+3}\) là ps tối giản
Gọi UCLN(n+1;2n+3) = d, ta có:
n+1 chia hết cho d
=> 2n+2 chia hết cho d
2n + 3 chia hết cho d
=> (2n+3)-(2n+2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
(2n-2n)+(3-2) chia hết cho d
1 chia hết cho d
=> d thuốc Ư(1) ={1;-1}
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
Chúc bạn học tốt!
Vì ps n+1 / 2n + 3 là ps tối giản nên n +1 và 2n +3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC của n +1 và 2n + 3
Ta có : (2n +3 ) - ( 2(n+1) ) chia hết cho d
Hay : (2n +3 ) - ( 2n +2 ) chia hết cho d
=> 2n +3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d => d ϵ Ư ( 1 ) = + 1
Vậy n + 1 / 2n + 3 là phân số tối giản
Cho \(A=\frac{2n+7}{5n+2}\left(n\in N\right)\)
Tìm n để A là ps tối giản
Giúp mk vs
Gọi d là ước chung nguyên tố của 2n + 7 và 5n + 2 thì:
Ta có : 2n + 7 và 5n + 2 đều chia hết cho d
=> 5(2n + 7) và 2(5n + 2) chia hết cho d
=> 10n + 35 và 10n + 4 chia hết cho d
=> (10n + 35) - (10n + 4) chia hết cho d => 31 chia hết cho d
=> d = 31
Để A tối giản thì d ko bằng 31
=> 2n + 7 ko chia hết cho 31
=> 2n + 7 - 31 ko chia hết cho 31
=> 2n - 28 ko chia hết cho 31
=> 2(n - 14) ko chia hết cho 31
=> n - 14 ko chia hết cho 31 ( vì 2 và 31 nguyên tố cùng nhau)
=> n - 14 ko bằng 31k
=> n ko bằng 31k + 14( k thuộc Z )
Vậy với n ko bằng 31k + 14 thì p/s A tối giản.
(BÀI NÀY TỚ HỌC RỒI NÊN CẬU YÊN TÂM)
Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là PS tối giản (n thuộc N)
Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d 60n+5 chia hết cho d
=>
30n +2chia hết cho d 60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)
gọi d là ƯCLN (12n+1 và 30n+2)
Ta có: (12n+1) chia hết cho d => 30(12n+1) chia hết cho d
(30n+2) chia hết cho d => 12(30n+2) chia hết cho d
=> [ 30(12n+1) - 12(30n+2)] chia hết cho d
=>1 chia hết cho d
Hay d = 1
Vậy 12n+1/30n+2 là phân số tối giản.