Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hày Cưi
Xem chi tiết
Doraemon
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Hày Cưi
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

Ái Kiều
Xem chi tiết
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 3 2020 lúc 21:07

Đặt \(\frac{a^2+1}{a}=x\Rightarrow x=\frac{a^2+1}{a}\ge\frac{2a}{a}=2\)

Khi đó:

\(S=\frac{5x}{2}+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{9x}{4}\ge2\sqrt{\frac{1}{x}\cdot\frac{x}{4}}+\frac{9\cdot2}{4}=1+\frac{18}{4}=\frac{11}{2}\)

Dấu "=" xảy ra tại a=1

Khách vãng lai đã xóa
ミ★ɦυүềη☆bùї★彡
Xem chi tiết
alibaba nguyễn
17 tháng 4 2018 lúc 9:54

\(A=\frac{a}{2-a}+\frac{1-a}{1+a}=\frac{2a^2-2a+2}{\left(1+a\right)\left(2-a\right)}\)

\(=1-\frac{3a\left(1-a\right)}{\left(1+a\right)\left(2-a\right)}\le1\)

Min tìm tương tự

hang pham
Xem chi tiết
Thanh Tùng DZ
9 tháng 5 2020 lúc 21:41

\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)

Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)

Dấu "=" xảy ra khi x = y = a

vậy ....

Khách vãng lai đã xóa
Vũ Ngọc Thảo Nguyên
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Rồng Đom Đóm
15 tháng 4 2019 lúc 20:38

Ta có:\(S=2a+\frac{1}{a^2}\)

\(A=8a+8a+\frac{1}{a^2}-14a\)

\(A\ge3\sqrt[3]{8a\cdot8a\cdot\frac{1}{a^2}}-14\cdot\frac{1}{2}\)

\(A\ge14-7=5\)

"="<=>a=1/2

Phạm Thị Hằng
Xem chi tiết
vũ tiền châu
22 tháng 9 2017 lúc 20:13

a)  ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)

tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)

=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)

mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)

cộng từng vế ta có \(S\ge9\)

dấu = xảy ra <=> a=b=c=1/2

câu 2 tương tự

vũ tiền châu
22 tháng 9 2017 lúc 20:15

chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin

Nguyễn Thị Mát
Xem chi tiết
Kudo Shinichi
1 tháng 1 2020 lúc 15:38

Ta có : \(ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}\end{cases}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)

Tương tự ta có :

\(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)

\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{12}\)

Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)

Khách vãng lai đã xóa