Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tuấn Kiệt
Xem chi tiết
Thắng Nguyễn
28 tháng 1 2018 lúc 19:58

\(M=\frac{2x+y+z-15}{x}+\frac{x+2y+z-15}{y}+\frac{x+y+2z-15}{z}\)

\(M-3=\frac{x+y+z-15}{x}+\frac{x+y+z-15}{y}+\frac{x+y+z-15}{z}\)

\(M-3=\left(x+y+z-15\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M\ge\left(x+y+z-15\right)\cdot\frac{9}{x+y+z}+3=\frac{3}{4}\)

\("="\Leftrightarrow x=y=z=4\)

Phạm Tuấn Kiệt
26 tháng 1 2018 lúc 22:53

nhận ra là bài này sai đề :)))

Nguyễn Thị Nga
21 tháng 2 2018 lúc 16:30

Bài này đúng đề mà

Xem chi tiết

nhận ra là bài này sai đề :)))

TNA Atula
26 tháng 1 2018 lúc 22:51

Bài 1

M=2x+y+z−15x+x+2y+z−15y+x+y+2z−15z

M=x+12−15x+y+12−15y+z+12−15z

M=x−3x+y−3y+z−3z

M=1−3x+1−3y+1−3z

M=3−(3x+3y+3z)

M=3−3(1x+1y+1z)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

⇒1x+1y+1z≥(1+1+1)2x+y+z=9x+y+z=34

⇒3(1x+1y+1z)≥94

⇒3−3(1x+1y+1z)≤34

⇔M≤34

Vậy M max=34

Dấu " = " xảy ra khi x=y=z=4

Bai nay tim GTLN moi dung nha

Witch Rose
Xem chi tiết
Kiệt Nguyễn
22 tháng 5 2020 lúc 18:30

Ta có: \(x^2\left(y+z\right)\ge x^2.2\sqrt{yz}=2\sqrt{x^4}.\sqrt{\frac{1}{x}}=2x\sqrt{x}\)(Áp dụng BĐT Cô - si cho 2 số dương y,z và sử dụng giả thiết xyz = 1)

Hoàn toàn tương tự: \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2\left(x+y\right)\ge2z\sqrt{z}\)

Do đó \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)

\(\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(a=x\sqrt{x}+2y\sqrt{y}\)\(b=y\sqrt{y}+2z\sqrt{z}\)\(c=z\sqrt{z}+2x\sqrt{x}\)

Suy ra: \(x\sqrt{x}=\frac{4c+a-2b}{9}\)\(y\sqrt{y}=\frac{4a+b-2c}{9}\)\(z\sqrt{z}=\frac{4b+c-2a}{9}\)

Do đó \(P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}\right)\)

\(=\frac{2}{9}\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\)

\(\ge\frac{2}{9}\left[4.3\sqrt[3]{\frac{c}{b}.\frac{a}{c}.\frac{b}{a}}+3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-6\right]\)(Áp dụng BĐT Cô - si cho 3 số dương)

\(=\frac{2}{9}\left[4.3+3-6\right]=2\)

Vậy \(P\ge2\)

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Đoàn Vũ Mạnh Quân
16 tháng 1 2021 lúc 16:59
#EF4444KOBIETNHA
Khách vãng lai đã xóa
Kiệt Nguyễn
16 tháng 1 2021 lúc 17:28

\(ĐK:x,y,z>\frac{1}{2}\)

Ta có: \(\left(x+2y\right)^2=\left(\frac{3y}{2}+\frac{y+2x}{2}\right)^2\ge4.\frac{3y}{2}.\frac{y+2x}{2}=3y\left(2x+y\right)\)\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{x+2y}{3xy}=\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\)\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(VT\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
16 tháng 1 2021 lúc 17:52

Từ giả thiết \(\Rightarrow x,y,z>\frac{1}{2}\)

Áp dụng \(\left(a+b\right)^2\ge4ab\) taoi có: 

\(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\left(\frac{2x+y}{2}\right)\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)

Dấu '=' xảy ra <=> x=y

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right),\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

\(\Rightarrow A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Dấu '=' xảy ra <=>x=y=z

Lại có: \(\sqrt{\left(2x-1\right)1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{\left(2x-1\right)}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}},\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

\(\Rightarrow A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)

Dấu '=' xảy ra <=> x=y=z=1

Vậy GTLN của A=3 khi x=y=z=1

Khách vãng lai đã xóa
dbrby
Xem chi tiết
Agami Raito
Xem chi tiết
Akai Haruma
28 tháng 5 2019 lúc 23:39

Lời giải:

Áp dụng BĐT Cauchy ngược dấu:

\(\frac{2y+2z-x}{x}.3\leq \left(\frac{\frac{2y+2z-x}{x}+3}{2}\right)^2=\left(\frac{y+x+z}{x}\right)^2\)

\(\Rightarrow \frac{2y+2z-x}{x}\leq \frac{1}{3}\left(\frac{x+y+z}{x}\right)^2\)

\(\Rightarrow \sqrt{\frac{x}{2y+2z-x}}\geq \frac{\sqrt{3}x}{x+y+z}\)

Hoàn toàn tương tự:

\(\sqrt{\frac{y}{2x+2z-y}}\geq \frac{\sqrt{3}y}{x+y+z}; \sqrt{\frac{z}{2x+2y-z}}\geq \frac{\sqrt{3}z}{x+y+z}\)

Cộng theo vế những BĐT trên ta có:

\(\Rightarrow P\geq \frac{\sqrt{3}(x+y+z)}{x+y+z}=\sqrt{3}\)

Vậy \(P_{\min}=\sqrt{3}\). Dấu "=" xảy ra khi \(x=y=z\)

Hoàng Quốc Tuấn
Xem chi tiết
Kiệt Nguyễn
30 tháng 4 2020 lúc 15:21

\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)

Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)

Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)

\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)

Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Tran Le Khanh Linh
1 tháng 5 2020 lúc 10:03

Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)

Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)

=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)

=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)

Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)

Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)

Vậy MaxA=3 đạt được khi x=y=z=1

Khách vãng lai đã xóa
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết