Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Thanh Nhân
Xem chi tiết
Lê Nhật Khôi
26 tháng 3 2019 lúc 22:13

Vì đa thức chia bậc 2 nên đa thức dư bậc 1

Có:

\(\hept{\begin{cases}N=\left(x+2\right)Q\left(x\right)+10\\N=\left(x-2\right)G\left(x\right)+24\\N=\left(x-2\right)\left(x+2\right)\left(-5x\right)+ax+b\left(1\right)\end{cases}}\)

Với x=2 và x=-2 thì

\(\hept{\begin{cases}2a+b=24\\-2a+b=10\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=17\\a=\frac{7}{2}\end{cases}}\)

Thê vào (1) rồi tìm N

Nơi gió về
Xem chi tiết
Không Tên
25 tháng 4 2018 lúc 21:06

Gọi thương của phép chia   f(x)    cho  (x+2)  là  A(x);   cho  (x-2)   là   B(x)

Theo bài ra ta có:   f(x)  =  (x+2).A(x) + 10           \(\Rightarrow\)   f(-2) = 10

                               f(x)  =  (x-2).B(x) + 24                        f(2)  =  24

Gọi số dư khi chia  f(x)   cho  x- 4   là  ax + b

Ta có:     \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+ax+b\)

                          \(=\left(x-2\right)\left(x+2\right)\left(-5x\right)+ax+b\)

Vì biểu thức trên đúng với mọi  x  nên ta lần lượt thay  \(x=-2;\)\(x=2\)vào biểu thức được:

\(f\left(-2\right)=-2a+b=10\)        \(\Rightarrow\) \(a=3,5\)

\(f\left(2\right)=2a+b=24\)                             \(b=7\)

Vậy   \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+3,5x+7\)

                       \(=-5x^3+23,5x+7\)

P.s:  tham khảo nhé

Lê Phúc Báu
20 tháng 4 lúc 22:29

y=17 mới đúng nhé 

꧁WღX༺
Xem chi tiết
Trang Nguyen
Xem chi tiết
Zz Victor_Quỳnh_Lê zZ
Xem chi tiết
Cô Hoàng Huyền
7 tháng 2 2018 lúc 16:08

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

Quách Trần Gia Lạc
Xem chi tiết
Cẩm Mịch
3 tháng 12 2018 lúc 20:18

Theo định lí Bezout, ta có:

\(f\left(x\right):\left(x+2\right)\) dư 10 \(\Rightarrow f\left(-2\right)=10\)

\(f\left(x\right):\left(x-2\right)\) dư 24 \(\Rightarrow f\left(2\right)=24\)

\(f\left(x\right):\left(x^2-4\right)\) được thương là -5x và còn dư

Nên ta giả sử số dư của phép chia trên là ax + b

\(\Rightarrow f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+ax+b\)

\(\Rightarrow f\left(x\right)=-5x^3+20x+ax+b\)

\(f\left(-2\right)=10\left(cmt\right)\)

\(\Rightarrow-5\left(-2\right)^3+20.\left(-2\right)+ax+b=10\)

\(\Rightarrow ax+b=10\)

\(\Rightarrow-2a+b=10\left(1\right)\)

\(f\left(2\right)=24\left(cmt\right)\)

\(\Rightarrow-5.2^3+20.2+ax+b=24\)

\(\Rightarrow ax+b=24\)

\(\Rightarrow2a+b=24\left(2\right)\)

Từ (1) và (2) suy ra:

\(-2a+b+2a+b=34\)

\(2b=34\)

\(b=17\)

\(\Rightarrow a=3,5\)

\(\Rightarrow ax+b=3,5x+17\)

\(\Rightarrow f\left(x\right)=-5x^3+20x+3,5x+17\)

hattori heiji
23 tháng 12 2017 lúc 22:26

cái này bn sd định lí bezoute là ra

So Yummy
Xem chi tiết
Bé Doraemon
26 tháng 12 2019 lúc 14:52

Violympic toán 8

Khách vãng lai đã xóa
no name
Xem chi tiết
Đinh Anh Thư
Xem chi tiết
Lê Hiền Trang
27 tháng 3 2021 lúc 16:52

f(x) chia x+2 dư 10⇒f(−2)=10

f(x) chia x−2 dư 24⇒f(2)=24

f(x) chia x^2−4 sẽ có số dư cao nhất là đa thức bậc 1

⇒f(x)=(x^2−4).(−5x)+ax+b (1)

Lần lượt thay x=2 và x=−2 vào (1):

{24=2a+b {a=7/2  b=17

⇒f(x)=−5x(x^2−4)+7/2x+17=−5x^3+47/2x+17

tk nha

Khách vãng lai đã xóa
Phạm Thành Đông
27 tháng 3 2021 lúc 16:53

Từ \(f\left(x\right)\)chia cho \(x^2-4\), ta thấy đa thức \(x^2-4\)có bậc 2 nên đa thức dư là đa thức không quá bậc là 1.

Do đó gọi đa thức dư là \(ax+b\)khi chia \(f\left(x\right)\)cho \(x^2-4\). Theo đề bài, ta có:

\(f\left(x\right)=-5x\left(x^2-4\right)+ax+b\)

\(\Rightarrow f\left(x\right)=-5x\left(x-2\right)\left(x+2\right)+ax+b\left(1\right)\)

Thay \(x=2\)vào đẳng thức (1), ta được:

\(f\left(2\right)=\left(-5\right).2\left(2-2\right)\left(2+2\right)+2a+b\)

\(\Rightarrow f\left(2\right)=0+2a+b=2a+b\)

Gọi đa thức thương là \(A\left(x\right)\)khi chia \(f\left(x\right)\)cho \(x-2\), theo đề bài, ta có:

\(f\left(x\right)=A\left(x\right)\left(x-2\right)+24\left(2\right)\)

Thay \(x=2\)vào đẳng thúc (2), ta được:

\(f\left(2\right)=A\left(2\right)\left(2-2\right)+24\)

\(\Rightarrow f\left(2\right)=24\)

Do đó \(2a+b=24\left(3\right)\)

Gọi đa thức thương là \(B\left(x\right)\)khi chia \(f\left(x\right)\)cho \(x+2\), theo đề bài, ta có:

\(f\left(x\right)=B\left(x\right)\left(x+2\right)+10\left(4\right)\)

Thay \(x=-2\)vào đẳng thức (4), ta được:

\(f\left(-2\right)=B\left(-2\right)\left(-2+2\right)+10\)

\(\Rightarrow f\left(-2\right)=10\)

Thay \(x=-2\)vào đẳng thức (1), ta được:

\(f\left(-2\right)=\left(-5\right)\left(-2\right)\left(-2-2\right)\left(-2+2\right)-2a+b\)

\(\Rightarrow f\left(-2\right)=-2a+b\)

Do đó : \(-2a+b=10\left(5\right)\)

Từ (3) và (5).

\(\Rightarrow2a+b-2a+b=24+10\)

\(\Rightarrow2b=34\)

\(\Rightarrow b=17\)

Do đó \(2a+17=24\)

\(\Rightarrow2a=7\Rightarrow a=\frac{7}{2}\)

Thay vào đẳng thức (1), ta được:

\(f\left(x\right)=-5x\left(x^2-4\right)+\frac{7}{2}x+17\)

\(\Rightarrow f\left(x\right)=-5x^3+20x+\frac{7}{2}x+17\)

\(\Rightarrow f\left(x\right)=-5x^3+\frac{47}{2}x+17\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 3 2021 lúc 18:22

Đặt dư trong phép chia f(x) cho x2 - 4 là ax+b

Theo đề bài ta có : \(\hept{\begin{cases}f\left(x\right)=\left(x+2\right)\cdot A\left(x\right)+10\left(I\right)\\f\left(x\right)=\left(x-2\right)\cdot B\left(x\right)+24\left(II\right)\\f\left(x\right)=\left(x^2-4\right)\cdot\left(-5x\right)+ax+b\left(III\right)\end{cases}}\)( với A(x), B(x) là thương trong phép chia )

Thế x = -2 vào (I) và (III) ta được \(\hept{\begin{cases}f\left(x\right)=10\\f\left(x\right)=-2a+b\end{cases}}\Rightarrow-2a+b=10\left(1\right)\)

Thế x = 2 vào (II) và (III) ta được \(\hept{\begin{cases}f\left(x\right)=24\\f\left(x\right)=2a+b\end{cases}}\Rightarrow2a+b=24\left(2\right)\)

Từ (1) và (2) => Ta có hệ phương trình \(\hept{\begin{cases}-2a+b=10\\2a+b=24\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{7}{2}\\b=17\end{cases}}\)

=> f(x) = ( x2 - 4 )(-5x) + 7/2x + 17

= -5x3 + 20x + 7/2x + 17

= -5x3 + 47/2x + 17

Khách vãng lai đã xóa