Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tsubasa( ɻɛɑm ʙáo cáo )
Xem chi tiết
Xyz OLM
11 tháng 6 2021 lúc 15:18

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

Khách vãng lai đã xóa
Tsubasa( ɻɛɑm ʙáo cáo )
Xem chi tiết
Trần Thu Hà
11 tháng 6 2021 lúc 14:21

2018^4n * 2019^4n *2020^ 4n

=(...8.^4)^n* (....9.^4)^n *(...0^4)^n

=...6^n* .....1^n* ...0^n

=....6 *...1 *...0( vì số tận cùng = 6,1,0 khi nâng lên bất kì lũy thừa nào thì cũng cho ta tận cùng =6 ,1,0)

= ...0 

mà số có tận cùng =0 thì là số chính phương vậy ko có n thỏa mãn

mình ko chắc có đúng ko nữa

Khách vãng lai đã xóa
Tsubasa( ɻɛɑm ʙáo cáo )
11 tháng 6 2021 lúc 14:25

xin lỗi + ko phải nhân

Khách vãng lai đã xóa
Trần Quang Dũng
Xem chi tiết
Minh Hiếu
19 tháng 4 2022 lúc 20:55

a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)

\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)

\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)

\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)

\(24n+384=25n+325\)

\(25n-24n=384-325\)

\(n=59\)

Minh Hiếu
19 tháng 4 2022 lúc 20:57

b) Sai đề nha

\(\left\{{}\begin{matrix}\dfrac{2018}{2019}< 1\\\dfrac{2019}{2020}< 1\\\dfrac{2020}{2021}< 1\\\dfrac{2021}{2022}< 1\end{matrix}\right.\)

\(\Rightarrow\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2022}< 4\)

Đào Khánh	Linh
19 tháng 4 2022 lúc 21:01

chị ơi hình như chị nhầm rồi P/s cuối phải là 1/n.(n+6)thì phải

Phạm Gia Khiêm
Xem chi tiết
Phạm Gia Khiêm
Xem chi tiết
Sakura
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 9 2019 lúc 16:31

ĐKXĐ: ...

Đặt \(\left(\sqrt{x-2018};\sqrt{y-2019};\sqrt{z-2020}\right)=\left(a;b;c\right)\) \(\Rightarrow a;b;c>0\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4a-4}{a^2}+\frac{4b-4}{b^2}+\frac{4c-4}{c^2}=3\)

\(\Leftrightarrow1-\frac{4a-a}{a^2}+1-\frac{4b-4}{b^2}+1-\frac{4c-4}{c^2}=0\)

\(\Leftrightarrow\frac{a^2-4a+4}{a^2}+\frac{b^2-4b+4}{b^2}+\frac{c^2-4c+4}{c^2}=0\)

\(\Leftrightarrow\left(\frac{a-2}{a}\right)^2+\left(\frac{b-2}{b}\right)^2+\left(\frac{c-2}{c}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2018}=2\\\sqrt{y-2019}=2\\\sqrt{z-2020}=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2022\\y=2023\\z=2024\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 9 2019 lúc 16:36

\(2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Do \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\) \(\Rightarrow y^2\le7\) (1)

\(2\left(x+1\right)^2\) là một số tự nhiên chẵn và 3 là số lẻ

\(\Rightarrow7-y^2\) là một số chẵn \(\Rightarrow y^2\) là một số lẻ (2)

Từ (1); (2) \(\Rightarrow y^2\) là số chính phương lẻ và nhỏ hơn 7

\(\Rightarrow y^2=1\Rightarrow y=\pm1\)

\(\Rightarrow2\left(x+1\right)^2=3\left(7-1\right)=18\)

\(\Rightarrow\left(x+1\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 9 2019 lúc 16:38

Ta có:

\(a_n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(a_n=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

\(a_n=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(a_n=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(a_n=\left(n^2+3n+1\right)^2\)

\(\Rightarrow a_n\) là số chính phương với mọi n tự nhiên

Nguyễn Bá Thúc Hào
Xem chi tiết
tran vinh
17 tháng 7 2021 lúc 11:19

a=230+22020+4n=415+41010+4n=415(1+4995+4n-15) mà 415 là số cp suy ra (1+4995+4n-15)là số cp

ta có: 1+4995+4n-15=22n-30+2.21989+1=(22n-30+1)2

đề 1+4995+4n-15=(2n-15)2+2.21989+1=(2n-15+1)2 là số cp thì n-15=1989 suy ra n=1974

nếu sai thì sorry bạn nha

Khách vãng lai đã xóa
Nguyễn Hồng Sâm
Xem chi tiết
Đoàn Đức Hà
24 tháng 2 2021 lúc 21:41

\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)

\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)

\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)

\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)

\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)

Giải \(\left(1\right)\Leftrightarrow n=2021\).

Giải \(\left(2\right)\)

- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm. 

- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định. 

- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm. 

Khách vãng lai đã xóa
Hoàng Hà My
Xem chi tiết
Nguyễn Đức	Thịnh
21 tháng 12 2021 lúc 21:02

Đặt n+2018 = a2; n+2021 = b2 (a,b là số tự nhiên; a < b)

=> b- a2 = (n+2021) - (n+2018) <=> (b - a)(b + a) = 3

Vì a,b là số tự nhiên nên b - a; b+a là số nguyên => b - a; b+a là ước của 3

Mặt khác 0 < b - a < b+a (vì 0<a<b) => b - a = 1; b+a = 3 <=> a = 1; b = 2

=> n = a2 - 2018 = -2017

Khách vãng lai đã xóa