Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Anh
Xem chi tiết
no name
Xem chi tiết
Thắng Nguyễn
28 tháng 11 2016 lúc 21:58

Đặt \(\hept{\begin{cases}x=b+c-a\\y=a+c-b\\z=a+b-c\end{cases}}\left(x;y;z>0\right)\).Ta có:

\(x+y=b+c-a+a+c-b=2c\Rightarrow c=\frac{x+y}{2}\)

\(y+z=a+c-b+a+b-c=2a\Rightarrow a=\frac{y+z}{2}\)

\(z+x=a+b-c+b+c-a=2b\Rightarrow b=\frac{z+x}{2}\)

Do đó: \(A=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)

\(\Leftrightarrow2A=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\ge6\) (BĐT AM-GM)

\(\Rightarrow A\ge\frac{6}{2}=3\).Dấu "=" khi a=b=c

Đào Thị Hồng Ngọc
Xem chi tiết
Mr Lazy
27 tháng 6 2015 lúc 19:42

Ta có: \(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab}{1+b^2}\)

\(1+b^2\ge2b\) \(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\)

Do đó: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);  \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Suy ra \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\)

Mặt khác ta có: \(3\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\frac{3}{a+b+c}\le1\)

\(\Rightarrow a+b+c\ge3\)

Do đó; \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\ge3\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

 

hotboy
Xem chi tiết
Phạm Minh Thành
Xem chi tiết
Quỳnh Hương
Xem chi tiết
Phước Nguyễn
28 tháng 7 2016 lúc 14:39

Keke

\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\ge\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)  \(\left(i\right)\)

Đặt  \(x=\frac{1}{a};\)  \(y=\frac{2}{b};\)  và  \(z=\frac{3}{c}\)  \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{2}{b}\\c=\frac{3}{z}\end{cases}}\)  nên   \(x,y,z>0\)

Khi đó, ta có thể biểu diễn lại bđt  \(\left(i\right)\) dưới dạng ba biến  \(x,y,z\)  như sau:

\(x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3xz}{2z+x}\) \(\left(ii\right)\)

Lúc này, ta cần phải chứng minh bđt  \(\left(ii\right)\)  luôn đúng với mọi  \(x,y,z>0\)

Thật vậy, ta có:

\(2x+y=x+x+y\ge3\sqrt[3]{x^2y}\)

\(\Rightarrow\) \(\frac{3xy}{2x+y}\le\frac{3xy}{3\left(x^2y\right)^{\frac{1}{3}}}=\left(xy^2\right)^{\frac{1}{3}}\le\frac{x+2y}{3}\)  \(\left(1\right)\)

Thiết lập các bđt còn lại theo vòng hoán vị  \(y\rightarrow z\rightarrow x\) , ta có:

\(\frac{3yz}{2y+z}\le\frac{y+2z}{3}\) \(\left(2\right);\)  \(\frac{3xz}{2z+x}\le\frac{z+2x}{3}\) \(\left(3\right)\)

Cộng từng vế ba bđt   \(\left(1\right);\)  \(\left(2\right);\)  và   \(\left(3\right)\) ta được:

\(VP\left(ii\right)\le\frac{x+2y+y+2z+z+2x}{3}=\frac{3\left(x+y+z\right)}{3}=x+y+z=VT\left(ii\right)\)

Vậy, bđt  \(\left(ii\right)\)  được chứng minh.

nên kéo theo  bđt  \(\left(i\right)\)  luôn là bđt đúng với  mọi  \(a,b,c>0\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z\) \(\Leftrightarrow\)  \(6a=3b=2c\)

ミ★Zero ❄ ( Hoàng Nhật )
4 tháng 5 2020 lúc 16:06

bạn làm giống mình đó

Khách vãng lai đã xóa
Lê Hồng Ngọc
Xem chi tiết
Lê Minh Long
Xem chi tiết
Trần Thanh Phương
12 tháng 7 2017 lúc 8:50

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Biến đổi vế 2 :

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )

\(=\frac{bc+ac+ab}{abc}\)

Ta có :

\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)

\(=\frac{abc+abc+abc}{abc}\)\(=3\)

→ ( a + b + c ) = 3

Ta có : 3 . 3 = 9 => ĐPCM

Nguyễn Lan Anb
Xem chi tiết
Lê Anh Thư
19 tháng 2 2017 lúc 22:37

phép chia cũng là 1 phân số vì dấu __ là dấu :

so sánh 2 phân số \(\frac{a}{b}\)\(\frac{a}{c}\)

tức là ta đã so sánh biểu thức a:b và a:c

và ta đã biết : trong 1 hép chia nếu nếu số chia càng lớn thì thương càng lớn .

Mà b>c

=> a:b<a:c <=> \(\frac{a}{b}\)<\(\frac{a}{c}\)

từ đó ta có quy tắc:

nếu 2 phân số có cùng tử , cùng là phân số dương hoặc âm nếu phân số nào có mẫu lớn hơn tì bé hơn .

nếu a,b,c >0 và b>c thì\(\frac{a}{b}\)>\(\frac{a}{c}\)

=>là vô lý