Cho a,b,c là các số nguyên: N=\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)
Chứng tỏ N lớn hơn hơn hoặc bằng 6
a) Tìm số tự nhiên x sao cho \(3^x\)+ 6 là số nguyên tố
b) Cho a, b, c là các số nguyên dương
Chứng tỏ N = \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)> hoặc bằng 6
Mik cần gấp mai nộp rùi ai làm đc 1 trong 2 câu mik cx tick
Cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng:
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)lớn hơn hoặc bằng 3
Đặt \(\hept{\begin{cases}x=b+c-a\\y=a+c-b\\z=a+b-c\end{cases}}\left(x;y;z>0\right)\).Ta có:
\(x+y=b+c-a+a+c-b=2c\Rightarrow c=\frac{x+y}{2}\)
\(y+z=a+c-b+a+b-c=2a\Rightarrow a=\frac{y+z}{2}\)
\(z+x=a+b-c+b+c-a=2b\Rightarrow b=\frac{z+x}{2}\)
Do đó: \(A=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)
\(\Leftrightarrow2A=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\ge6\) (BĐT AM-GM)
\(\Rightarrow A\ge\frac{6}{2}=3\).Dấu "=" khi a=b=c
Cho a,b,c là 3 số dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ hơn hoặc bằng 3
Chứng minh rằng \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{1}{2}\left(ab+bc+ca\right)\)lớn hơn hoặc bằng 3
Ta có: \(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab}{1+b^2}\)
\(1+b^2\ge2b\) \(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\)
Do đó: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Suy ra \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\)
Mặt khác ta có: \(3\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\frac{3}{a+b+c}\le1\)
\(\Rightarrow a+b+c\ge3\)
Do đó; \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\ge3\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
a) Cho a, b, c > 0. Chứng minh rằng M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên
b) Cho a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng ab + bc + ca nhỏ hơn hoặc bằng 0
Biết a,,b,c là độ dài ba cạnh của một tam giác và 0 nhỏ hơn hoặc bằng t nhỏ hơn hoặc bằng 1 chứng minh rằng :
\(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{c}{a+b-c}}\)lớn hơn hoặc bằng \(2\sqrt{t+1}\)
Với các số dương a,b,c chứng minh rằng: \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\) lớn hơn hoặc bằng \(\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)
Keke
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\ge\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\) \(\left(i\right)\)
Đặt \(x=\frac{1}{a};\) \(y=\frac{2}{b};\) và \(z=\frac{3}{c}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{2}{b}\\c=\frac{3}{z}\end{cases}}\) nên \(x,y,z>0\)
Khi đó, ta có thể biểu diễn lại bđt \(\left(i\right)\) dưới dạng ba biến \(x,y,z\) như sau:
\(x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3xz}{2z+x}\) \(\left(ii\right)\)
Lúc này, ta cần phải chứng minh bđt \(\left(ii\right)\) luôn đúng với mọi \(x,y,z>0\)
Thật vậy, ta có:
\(2x+y=x+x+y\ge3\sqrt[3]{x^2y}\)
\(\Rightarrow\) \(\frac{3xy}{2x+y}\le\frac{3xy}{3\left(x^2y\right)^{\frac{1}{3}}}=\left(xy^2\right)^{\frac{1}{3}}\le\frac{x+2y}{3}\) \(\left(1\right)\)
Thiết lập các bđt còn lại theo vòng hoán vị \(y\rightarrow z\rightarrow x\) , ta có:
\(\frac{3yz}{2y+z}\le\frac{y+2z}{3}\) \(\left(2\right);\) \(\frac{3xz}{2z+x}\le\frac{z+2x}{3}\) \(\left(3\right)\)
Cộng từng vế ba bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta được:
\(VP\left(ii\right)\le\frac{x+2y+y+2z+z+2x}{3}=\frac{3\left(x+y+z\right)}{3}=x+y+z=VT\left(ii\right)\)
Vậy, bđt \(\left(ii\right)\) được chứng minh.
nên kéo theo bđt \(\left(i\right)\) luôn là bđt đúng với mọi \(a,b,c>0\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z\) \(\Leftrightarrow\) \(6a=3b=2c\)
bạn làm giống mình đó
cho a,b,c >0
đặt H=\(\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
cmr: số lớn nhất trong 3 số a,b,c luôn lớn hơn hoặc bằng H
Chứng minh rằng : (a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) lớn hơn hoặc bằng 9 với a,b,c lớn hơn 0
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Biến đổi vế 2 :
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )
\(=\frac{bc+ac+ab}{abc}\)
Ta có :
\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)
\(=\frac{abc+abc+abc}{abc}\)\(=3\)
→ ( a + b + c ) = 3
Ta có : 3 . 3 = 9 => ĐPCM
a) chứng tỏ rằng trong 2 phân số cùng tử,tử và mẫu đều dương,phân số nào có mẫu nhỏ hơn thì lớn hơn
nếu a,b,c>0 và b>c thi\(\frac{a}{b}>\frac{a}{c}\)
phép chia cũng là 1 phân số vì dấu __ là dấu :
so sánh 2 phân số \(\frac{a}{b}\) và \(\frac{a}{c}\)
tức là ta đã so sánh biểu thức a:b và a:c
và ta đã biết : trong 1 hép chia nếu nếu số chia càng lớn thì thương càng lớn .
Mà b>c
=> a:b<a:c <=> \(\frac{a}{b}\)<\(\frac{a}{c}\)
từ đó ta có quy tắc:
nếu 2 phân số có cùng tử , cùng là phân số dương hoặc âm nếu phân số nào có mẫu lớn hơn tì bé hơn .
nếu a,b,c >0 và b>c thì\(\frac{a}{b}\)>\(\frac{a}{c}\)
=>là vô lý