tìm GTNN VÀ GTLN của \(x\sqrt{5-x}+< 3-x>\sqrt{2+x}\)
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
Tìm GTLN và GTNN của A= 3\(\sqrt{x-1}+4\sqrt{5-x}\) với 1≤x≤5
\(A\le\sqrt{\left(3^2+4^2\right)\left(x-1\right)\left(5-x\right)}=10\)
\(A_{max}=10\) khi \(\dfrac{\sqrt{x-1}}{3}=\dfrac{\sqrt{5-x}}{4}\Rightarrow x=\dfrac{61}{25}\)
\(A=3\left(\sqrt{x-1}+\sqrt{5-x}\right)+\sqrt{5-x}\ge3\left(\sqrt{x-1}+\sqrt{5-x}\right)\ge3\sqrt{x-1+5-x}=6\)
\(A_{min}=6\) khi \(x=5\)
Câu 1: Tìm GTNN của E = x- \(\sqrt{x-2015}\)
Câu 2: tìm GTLN của C= \(\sqrt{x}\)-x
Câu 3 :
Câu 4:
Câu 5
Câu 2:
\(C=-x+\sqrt{x}\)
\(=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
tìm GTLN và GTNN của biểu thức C=\(3\sqrt{x-2}+4\sqrt{5-x}\)
để biểu thức C xác định thì xảy ra đồng thời
x-2>=05-x>=0=>2=<x=<5
thay x=2;3;4;5
tim ra gia tri nho nhat va lon nhat
Tìm GTLN ,GTNN của hàm số sau :
\(y=\sqrt{3+x}+\sqrt{5-x}\)
Help me
Ta có: \(y=\sqrt{3+x}+\sqrt{5-x}\)
ĐKXĐ: \(-3\le x\le5\)
\(y^2=3+x+5-x+2\sqrt{\left(3+x\right)\left(5-x\right)}=8+2\sqrt{\left(3+x\right)\left(5-x\right)}\)\(\ge8\)
\(\Rightarrow y\ge2\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)(thỏa mãn)
Vậy min y = \(2\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
mặt khác \(y^2\) = \(8+2\sqrt{\left(3+x\right)\left(5-x\right)}\le8+3+x+5-x=16\)
\(\Rightarrow y\le4\)
Dấu"=" xảy ra khi và chỉ khi \(3+x=5-x\Leftrightarrow x=1\)(thỏa mãn)
Vậy max y = 4 \(\Leftrightarrow x=1\)
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
Tìm GTLN (nếu có) và GTNN (nếu có) của các biểu thức sau:
a) \(1+\sqrt{2-x},\sqrt{x-3}-2,1-3\sqrt{1-2x}\)
b) \(\sqrt{4-x^2};\sqrt{2x^2-x+3};1-\sqrt{-x^2+2x+5}\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tìm GTNN và GTLN
\(\sqrt{x\text{+}3}\text{+}\sqrt{5-x}\)