Tìm MAX và MIN của xy biết rằng x,y là các số tự nhiên khác 0 và x+y=201+
Tìm min, max của P = x2 + y2 với x, y là các số thực không âm và x + y + xy = 15
\(\left(x^2+9\right)+\left(y^2+9\right)+3\left(x^2+y^2\right)\ge6x+6y+6xy=90\)
\(\Rightarrow4\left(x^2+y^2\right)+18\ge90\)
\(\Rightarrow x^2+y^2\ge18\)
\(P_{min}=18\) khi \(x=y=3\)
\(x+y+xy=15\Rightarrow\left\{{}\begin{matrix}x\le15\\y\le15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\left(x-15\right)\le0\\y\left(y-15\right)\le0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2\le15x+15y\) (1)
Cũng từ đó ta có: \(\left(x-15\right)\left(y-15\right)\ge0\Rightarrow xy\ge15x+15y-225\)
\(\Rightarrow16x+16y-225\le x+y+xy=15\)
\(\Rightarrow x+y\le15\) (2)
(1);(2) \(\Rightarrow x^2+y^2\le15.15=225\)
\(P_{max}=225\) khi \(\left(x;y\right)=\left(0;15\right);\left(15;0\right)\)
Tìm Min và Max của A=x^2+y^2 biết x,y là 2 số thực thỏa mãn x^2+y^2-xy=4
a) Tìm số tự nhiên x và y biết y là số nguyên tố và x . y = 28
b) Tìm số tự nhiên x biết x khác 0 và x là số bé nhất trong các số chia hết cho 36 và 90
a: Vì y là số nguyên tố
mà y là ước của 28
nên y=2
=>x=14
b: Theo đề, ta có: x=BCNN(36;90)
hay x=180
a) Tìm số tự nhiên x và y biết y là số nguyên tố và x . y = 28
b) Tìm số tự nhiên x biết x khác 0 và x là số bé nhất trong các số chia hết cho 36 và 90
bài kia quá dễ cậu ko làm đc thì học lớp 6 làm gì
tìm tất cả các số tự nhiên x,y khác 0 biết rằng y là một bội của x và: x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x=y-3
2) Tìm tất cả các số tự nhiên x y, khác 0, biết rằng y là một bội của x và: x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x=y-3
ghi cái gì vậy bạn ? Mình ko hiểu lắm :))))))))))))))
Cho các số thực x, y thỏa mãn: \(x^2+y^2+xy-6\left(x+y\right)+11=0\)
Tìm min và max của P = 2x + y
Từ đề bài \(\Rightarrow4x^2+4y^2+4xy-24x-24y+44=0\)
\(\Leftrightarrow\left(2x+y\right)^2-24x-12y+36+3y^2-12y+12-4=0\)
\(\Leftrightarrow\left(2x+y-6\right)^2+3\left(y-2\right)^2-4=0\)
\(\Leftrightarrow\left(2x+y-6\right)^2=4-3\left(y-2\right)^2\le4\forall x;y\)
\(\Leftrightarrow-2\le2x+y-6\le2\Rightarrow4\le2x+y\le8\)
Do đó \(4\le P\le8\)
Tìm tất cả các số tự nhiên x, y khác 0, biết rằng y là một bội của x và x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x= y-3
Cho x và y là hai số tự nhiên khác 0 mà x+y=2017.Tìm giá trị lớn nhất của tích xy
Áp dụng bất đẳng thức Cosi cho 2 số dương ta có \(x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\)
\(\Rightarrow xy\le\frac{2017^2}{4}=\frac{4068289}{4}\) Dấu bằng xảy ra khi và chỉ khi \(x=y=\frac{2017}{2}=1008,5\)
Vậy giá trị lớn nhất của tích xy là \(\frac{4068289}{4}\)\(\Leftrightarrow x=y=1008,5\)
NHỚ K MÌNH NHA
Nhầm rồi b. x,y là tự nhiên khác 0 mà.
Áp dụng bất đẳng thức Cosi cho 2 số dương ta có x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}x+y≥2xy⇒xy≤4(x+y)2
\Rightarrow xy\le\frac{2017^2}{4}=\frac{4068289}{4}⇒xy≤420172=44068289 Dấu bằng xảy ra khi và chỉ khi x=y=\frac{2017}{2}=1008,5x=y=22017=1008,5
Vậy giá trị lớn nhất của tích xy là \frac{4068289}{4}44068289\Leftrightarrow x=y=1008,5⇔x=y=1008,5
NHỚ K MÌNH NHA