tìm x.y thỏa mãn :(x-2)mũ x nhân (y-3) mũ 2 =-4
Bài 1: Nhân các đơn thức sau và tìm bậc và hệ số của đơn thức nhận được .
a,(-2x mũ 2.y ).(5.x.y mũ 4 )
b, (27 phần 10 .x mũ 4. y mũ 2 ).(5 phần 9.x.y )
c, (1 phần 3 .x mũ 3.y).(-xy)mũ 2
a/ \(\left(-2x^2y\right)5xy^4\)
\(=-10x^3y^5\)
a) Ta có: \(\left(-2x^2y\right)\cdot\left(5xy^4\right)\)
\(=\left(-2\cdot5\right)\cdot\left(x^2\cdot x\right)\cdot\left(y\cdot y^4\right)\)
\(=-10x^3y^5\)
b) Ta có: \(\left(\dfrac{27}{10}x^4y^2\right)\cdot\left(\dfrac{5}{9}xy\right)\)
\(=\left(\dfrac{27}{10}\cdot\dfrac{5}{9}\right)\cdot\left(x^4\cdot x\right)\cdot\left(y^2\cdot y\right)\)
\(=\dfrac{3}{2}x^5y^3\)
c) Ta có: \(\left(\dfrac{1}{3}x^3y\right)\cdot\left(-xy\right)^2\)
\(=\dfrac{1}{3}x^3y\cdot x^2y^2\)
\(=\dfrac{1}{3}x^5y^3\)
Tìm cặp số nguyên [x.y] thỏa mãn x mũ 2.y-2.x=5
x^2y -2x=5
x( xy-2)=5
Nếu x =1 và xy-2 =5
Suy ra x =1 và y=7
Nếu x = -1 và xy-2 = -5
Suy ra x = -1 và y=3
Tương tự bạn có thể làm lại với 2 TH rồi KL
TH3 : x = 5; xy-2 =1
TH4: x= -5 ; xy-2 = -1
ìm các số nguyên tố x,y thỏa mãn; (x-2) mũ 2 nhân (y-3)mũ 2 = -4
BÀI 1: tìm số nguyên x,y biết :
a, 2.x.y + 2.x-y=8
b, 9.x.y - 6.x +3.y=6
c, x mũ 2 +x.y +x+y=2
d, 2.x mũ 2 +7.x.y + 6.y mũ 2=15
BÀI 2: tính:
a, A= 1 + 5 mũ 2+5 mũ 4+...................+ 5 mũ 200
b, B= 7-7 mũ 2 +7 mũ 3-....................+7 mũ 301
AI TRẢ LỜI ĐÚNG VÀ SỚM NHẤT MK SẼ TÍCH CHO BẠN ĐÓ NHA!!
a) \(2xy+2x-y=8\)
\(\Rightarrow\ 2x\left(y+1\right)-\left(y+1\right)=7\)
\(\Leftrightarrow\left(2x-1\right)\left(y+1\right)=7\)
\(\Rightarrow\left[\begin{matrix}\begin{cases}2x-1=-7\\y+1=-1\end{cases}\\\begin{cases}2x-1=-1\\y+1=-7\end{cases}\end{matrix}\right.\left[\begin{matrix}\begin{cases}2x-1=7\\y+1=1\end{cases}\\\begin{cases}2x-1=1\\y+1=7\end{cases}\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=4\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=1\\y=6\end{cases}\\\left[\begin{matrix}\begin{cases}x=-3\\y=-2\end{cases}\\\begin{cases}x=0\\y=-8\end{cases}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
c)\(x^2+xy+x+y=2\)
\(\Leftrightarrow x\left(x+1\right)+y\left(x+1\right)=2\)
\(\Leftrightarrow\left(x+y\right)\left(x+1\right)=2\)
\(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x+y=2\\x+1=1\end{cases}\\\begin{cases}x+y=1\\x+1=2\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x+y=-2\\x+1=-1\end{cases}\\\begin{cases}x+y=-1\\x+1=-2\end{cases}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=0\\y=2\end{cases}\\\begin{cases}x=1\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=-2\\y=0\end{cases}\\\begin{cases}x=-3\\y=2\end{cases}\end{matrix}\right.\end{matrix}\right.\)
d)\(2x^2+7xy+6y^2=15\)
\(\Leftrightarrow\left(2x+3y\right)\left(x+2y\right)=15\)
\(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\left[\begin{matrix}\begin{cases}2x+3y=1\\x+2y=15\end{cases}\\\begin{cases}2x+3y=15\\x+2y=1\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}2x+3y=3\\x+2y=5\end{cases}\\\begin{cases}2x+3y=5\\x+2y=3\end{cases}\end{matrix}\right.\end{matrix}\right.\\\left[\begin{matrix}\left[\begin{matrix}\begin{cases}2x+3y=-1\\x+2y=-15\end{cases}\\\begin{cases}2x+3y=-15\\x+2y=-1\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}2x+3y=-3\\x+2y=-5\end{cases}\\\begin{cases}2x+3y=-5\\x+2y=-3\end{cases}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=-43\\y=29\end{cases}\\\begin{cases}x=27\\y=-13\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=-9\\y=7\end{cases}\\\begin{cases}x=1\\y=1\end{cases}\end{matrix}\right.\end{matrix}\right.\\\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=43\\y=-29\end{cases}\\\begin{cases}x=-27\\y=13\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=9\\y=-7\end{cases}\\\begin{cases}x=-1\\y=-1\end{cases}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Cho x, y,z thỏa mãn xyz=11, x+y+z =3 , x mũ 2 + y mũ 2 + z mũ 2 = 29Tính
H=x mũ 3 + y mũ 3 + z mũ 3
Bài 1:Thu gọn, tìm bậc đối với mỗi biến, bậc đối với tập hợp các biến:
a. 1/3.x mũ 2.x mũ 3
b. 2.x mũ 4.y mũ 3.(-7).x.y mũ 2
c. (-3.x mũ 3.y mũ 2.z).(-1/3.x.y mũ 2) mũ 3
d. 1/6.a.x.y mũ 2.(-2.x mũ 2.y.z) mũ 2
H ko tiện chốc mik gửi sẽ gửi tiếp bài 2 ạ
Giúp mik nha mai cô KT rồi huhu
Ai lm nhanh và đúng mik tích thẳng thắn luôn nhé
tìm tất cả số nguyên dương x , y , z thỏa mãn:
2z-4x phần 3=3x -2y phần 4 =4y - 3z phần 2 và 200< y mũ 2 +z mũ 2 <450
tìm số nguyên tố x,y thỏa mãn : x mũ 2 +1 = 6y mũ 2 +2
cho các số x y thỏa mãn hai chấm x - 2 mũ 4 + 2y - 1 mũ 2018 nhỏ hơn hoặc bằng 0 tính giá trị của biểu thức m = 11 x mũ 2 y + 4 x y mũ 2