Cmr: \(333...3^2+555...5444...4^2\) là số chính phương.
( n chữ số 3, n-1 chữ số 5, n chữ số 4 ).
Bài 1: Tìm n có 2 chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương
Bài 2: Tìm số chính phương n có 3 chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không thay đổi
Bài 3: Tìm số tự nhiên n (n>0) sao cho tổng 1! + 2! + ... + n! là một số chính phương
Bài 4: Tìm các chữ số a và b sao cho: \(\overline{aabb}\)là số chính phương
Bài 5: CMR: Tổng bình phương của 2 số lẻ bất kì không phải là một số chính phương
Bài 6: Một số gồm 4 chữ số, khi đọc ngược lại thì không đổi và chia hết cho 5, Số đó có thể là số chính phương hay không?
Bài 7: Tìm số chính phương có 4 chữ sô chia hết cho 33
CÁC BẠN GIÚP MÌNH NHÉ! THANKS
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
chịu thôi
...............................
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.
Bài 1: Tìm số tự nhiên n có 2 chữ số biết rằng 2.n+1 và 3.n+1 là các số chính phương.
Bài 2: Tìm số tự nhiên n sao cho S = 1!+2!+3!+...+ n! là số chính phương
Bài 3: Tìm số chính phương có 4 chữ số gồm cả 4 chữ số 0;2;3;5
Chứng tỏ rằng các số sau ko là số chính phương:
a) n = 2004^4+2004^3+2004^2+23
b) n = 4^4+44^44+444^444+4444^4444+15
c) n = 23^5+23^12+23^2003
d) n = 333^333+555^555+777^777
e) n là tổng các bình phương của 4 stn liên tiếp
Chứng minh số sau là số chính phương : 11…1 555..5 6 (n chữ số 1; n – 1 chữ số 5).
Ta có :
11...1 555...5 6 (n chữ số 1; n -1 chữ số 5)
= 111…1 555…55 + 1 (n chữ số 1; n chữ số 5)
= 111…1 000…00 + 555….55 + 1 (n chữ số 1; n chữ số 0; n chữ số 5)
= 111….1 x 100…0 + 5.111…11 + 1 (n chữ số 1; n chữ số 0)
= 111…1 x (999…9 + 1) + 5.111…11 + 1
= 111…1 x 999…9 + 111…1 + 5.111…11 + 1
= (333…3)² + 6.111…1 + 1 (n chữ số 3)
= (333…3)² + 2.333…3.1 + 1
= (333…3 + 1)2
= 333…342 (n – 1 chữ số 3) là một số chính phương. (đpcm)
Giải giúp mình 3 bài toán:
D = 22499...99(n - 2 chữ số 9)1000...000(n chữ số 0)9 là số chính phương
E = 11...1(n chữ số 1)55...55(n - 1 chữ số 5)6 là số chính phương
F = 44...4 (2n chữ) + 222...2(n + 1 chữ) + 88...8(n chữ)
Cảm ơn các bạn nhiều.
Cho ba số A=44...4 (2n chữ số 4) ; B=22...2 (n+1 chữ số 2) ; C=88...8 (n chữ số 8). CMR: A+B+C+7 là một số chính phương.
\(A=444......4\) (\(2n\) chữ số 4) \(=4.1111.....111\) (\(2n\) chữ số 1) \(=4.\dfrac{10^{2n}-1}{9}\)
\(B=222.....22\) (\(n+1\) chữ số 2) \(=2.111....11\) (\(n+1\) chữ số 1) \(=2.\dfrac{10^{n+1}-1}{9}\)
\(C=888....888\) (\(n\) chữ số 8) \(=8.111....1111\) (\(n\) chữ số 1) \(=8.\dfrac{10^n-1}{9}\)
\(\Leftrightarrow A+B+C+7=\dfrac{4,10^{2n}+2.10^{n+1}+8.10^n-14}{9}\)
cmr các số sau là số chính phương
a) M=111..1555..5 ( n chữ số 1 n-1 chữ số 5)
b) 444..4888..89(n chữ số 4 n-1 chữ số 8)
b) \(N=444.....44448888.....8889\) (n số 4 và n-1 số 8)
\(N=444.....44448888.....8888+1\)(n số 4 và n số 8)
\(N=444.....4444.10^n+8888.....8888+1\) (n số 4 và n số 8)
\(N=4\times11....11.10^n+8\times11....11+1\)
Đặt t= 111.....11111 (n số 1)
\(\Rightarrow10^n=9t+1\)
\(N=4t\left(9t+1\right)+8t+1\)
\(N=36t^2+4t+8t+1\)
\(N=36t^2+12t+1=\left(6t+1\right)^2\)
suy ra N là số chính phương
cmr các số sau là số chính phương
a) M=111..1555..5 ( n chữ số 1 n-1 chữ số 5)
b) 444..4888..89(n chữ số 4 n-1 chữ số 8)