Cho tam giác ABC cân tại A có góc A bé hơn 90 độ kẻ BD vuông góc với ÁC Gọi Ở là giao điểm của BD và CE và M là trung điểm của đoạn thằng BC
Chứng minh rằng
a) BD=C
Cho tam giác ABC cân ở A có A< 90 độ. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi I là giao điểm của BD và CE. Gọi M là trung điểm của BC. Chứng minh A, I, M thẳng hàng.
Giúp với mọi người ơi
chị làm đây ko bt đúng hay sai đâu nha
xét tam giác ABC có BD vuông góc với AC
CE vuông góc với AB
hai đường thẳng này cát nhau tại I
suy ra I là trực tâm của tam giác ABC
suy ra AI vuông góc với BC(1)
Mặt khác, M là trung điểm của BC=> AM là đường trung tuyến của tam giác ABC
mà trong 1 tam giác cân đường trung tuyến đồng thời là đường cao
<=> AM cũng là đường cao của tam giác ABC
=> AM vuông góc với BC(2)
từ (1)(2) ta có A,I,M thẳng hàng
bài 4: cho tam giác ABC cân tại A (góc A nhỏ hơn 90 độ). Kẻ BD vuông góc với AC tại D và CE vuông góc AB tại E .
a, chúng minh tam giác ABD= tam giác ACE, từ đó suy ra góc ABD= góc ACE
b, gọi H là giao điểm của BD và CE , chứng minh tam giác BHC là tam giác cân so sánh HB và HD
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD
Cho tam giác ABC cân tại A có góc A bằng 90 độ kẻ BD vuông góc với AC kẻ CF vuông góc với AB gọi k là giao điểm của BD và CE Chứng minh rằng a tam giác bce = tam giác cbd B tam giác bek = tam giác cdk là phân giác của góc Bac D ba điểm aki thẳng hàng với I là trung điểm của BC
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có
EB=DC
góc KBE=góc KCD
=>ΔKEB=ΔKDC
c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có
AK chung
KE=KD
=>ΔAEK=ΔADK
=>góc EAK=góc DAK
=>AK là phân giác của góc BAC
d: ΔABC cân tại A có AK là phân giác
nên AK là trung trực của BC
=>A,K,I thẳng hàng
Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông góc với AC và CE vuông góc với AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác HBC cân
Cho tam giác ABC cân tại A có góc A bằng 90 độ . Vẽ BD vuông góc tại D CE vuông góc AB tại E .Gọi I là giao điểm của BD và CE.
a)Chứng minh AD=AE
b)chứng minh AI là tia phân giác của góc BAC
c)Chứng minh DE song song với BC
d)Gọi M là trung điểm cạnh BC . Chứng minh ba điểm A,I,M thẳng hàng
ai giúp mình câu d với ạ. chỉ câu d thôi nha
Cho tam giác ABC cân tại A ( góc A < 90 độ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: tam giác ABD = tam giác ACE.
b) Chứng minh: tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh: góc ECB = góc DKC.
cho tam giác abc cân tại a, góc a < 90 độ, kẻ bd vuông góc vs ac tại d, ce vuông góc với ab tại e. gọi h là giao điểm của bd và ce
a/ chứng minh : ae = ad
b/ b/ gọi m là trung điểm của bc, chứng minh a,h,m thẳng hàng
Cho tam giác ABC cân tại A có góc A < 90 độ kẻ BD vuông góc với AC , CE vuông góc với AB gọi I là giao điểm của BD và CE Chứng minh rằng
a) AD = AE
b) AI là phân giác của góc BAC
Theo đề bài: BD, CE là đường cao có giao điểm là K => K là trực tâm của tam giác ABC. => AK là đường cao.
Mà tam giác ABC cân => AK vừa là đường cao vừa là phân giác.
Giúp mình với các bạn!
Cho tam giác ABC cân tại A (góc A<90°). Kẻ BD vuông góc với AC tại D. CE vuông góc với AB tại E, biết BD=8cm, BC=10cm.
a)C/m tam giác AEC và tam giác ADB bằng nhau
b)Trên tia BD lấy điểm K sao cho D là trung điểm của BK, gọi M là trung điểm của KC, BM cắt CD tại I. Tính CI
c)Gọi H là giao điểm của BD và CE. C/m AH vuông góc với BC.
a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)
góc AEC = góc ADB= 90 do ...
góc A chung
=> tam giác AEC = tam giác ADB (ch - gn)
a.
Xét \(\Delta AEC\) và \(\Delta ADB\) có:AB=AC(cạnh tam giác cân);\(\widehat{AEC}=\widehat{ADB}=90^0\);\(\widehat{A}\) chung
\(\Rightarrow\Delta AEC=\Delta ADB\left(c.g.c\right)\)
b.
Do trung tuyến CD và BM cắt nhau tại I nên I là trọng tâm.
\(\Rightarrow CI=\frac{2}{3}CD\)
Áp dụng định lý py-ta-go vào tam giác vuông BDC ta có:
\(BC^2=BD^2+DC^2\)
\(\Rightarrow CD^2=BC^2-BD^2\)
\(\Rightarrow CD^2=100-64\)
\(\Rightarrow CD=6\) vì \(CD>0\)
\(\Rightarrow CI=\frac{2}{3}\cdot6=4\)
c
Xét \(\Delta BEC\) và \(\Delta BDC\) có:\(\widehat{BEC}=\widehat{BDC}=90^0\);BC chung;\(\widehat{EBC}=\widehat{DCB}\)
\(\Rightarrow\Delta BEC=\Delta BDC\left(c.g.c\right)\Rightarrow BE=DC\Rightarrow AE=AD\)
Xét \(\Delta HAE\) và \(\Delta HAD\) có:\(\widehat{AEH}=\widehat{ADH}=90^0;AH\)chung;\(AE=AD\)
\(\Rightarrow\Delta HAE=\Delta HAD\left(c.g.c\right)\Rightarrow AH\) là đường phân giác.
Mặt khác tam giác ABC cân nên AH đồng thời là đường cao (nếu bạn chưa học cái này thì có thể CM vuông góc bằng cách tạo giao điểm giữa AH và BC)
a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)
góc AEC = góc ADB= 90 do ...
góc A chung
=> tam giác AEC = tam giác ADB (ch - gn)