Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Minh
Xem chi tiết
Đàm Thị Minh Hương
18 tháng 7 2017 lúc 7:55

Áp dụng BĐT Cauchy có:

 S= \(\frac{1}{x}\)\(\frac{4}{y}\)+\(\frac{9}{z}\)\(\frac{1^2}{x}\)\(\frac{2^2}{y}\)+\(\frac{3^2}{z}\)>= \(\frac{\left(1+2+3\right)^2}{x+y+z}\)\(\frac{6^2}{1}\)=36

Vậy Min S=36

Nguyễn Thiều Công Thành
18 tháng 7 2017 lúc 9:38

cái đó là bđt schwarts Đ à

Pain Thiên Đạo
14 tháng 2 2018 lúc 15:40

đàm thi hương sai chắc luôn 

cô si dạng akuma xảy ra khi các số hạng = nhau nhé

nếu m làm như vậy thì dấu = xảy ra khi x=y=z=1/3

thay số ta được

\(\frac{1}{\left(\frac{1}{3}\right)}+\frac{4}{\left(\frac{1}{3}\right)}+\frac{9}{\left(\frac{1}{3}\right)}=36\)

\(\frac{14}{\left(\frac{1}{3}\right)}=36\)

\(\frac{14}{\frac{1}{3}}=\frac{14.3}{1}=\frac{42}{1}\) sai

tran cam tu
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 7 2020 lúc 21:15

Áp dụng Cauchy Schwarz

\(A=\frac{1}{x}+\frac{1}{y}+\frac{9}{z}\)

\(\ge\frac{\left(1+1+3\right)^2}{x+y+z}=\frac{25}{x+y+z}=25\)

Đẳng thức xảy ra bạn tự giải

Khách vãng lai đã xóa
lethienduc
Xem chi tiết
zZz Cool Kid_new zZz
13 tháng 7 2020 lúc 6:18

Sử dụng AM - GM dạng cộng mẫu :

\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\)

\(\ge\frac{\left(1+2+3\right)^2}{x+y+z+1+2+3}\)

\(=\frac{36}{x+y+z+6}\)

\(=\frac{36}{12}=3\)

Đẳng thức xảy ra tại ......

Trên kia là sai lầm thường gawpjjj ( theo mình nghĩ thế tại nhác tìm dấu bằng )

thứ 2 là wolfram alpha bảo không có minimize:

Khách vãng lai đã xóa
Nguyễn Thùy Chi
Xem chi tiết
Trần Thanh Phương
2 tháng 9 2019 lúc 11:25

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{1^2}{x}+\frac{2^2}{y}+\frac{3^2}{z}\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{6};y=\frac{1}{3};z=\frac{1}{2}\)

hghrfhtgur
Xem chi tiết
Thảo Nguyên Xanh
Xem chi tiết
alibaba nguyễn
12 tháng 10 2017 lúc 14:46

Ta có: 

\(\frac{1}{2x+y+z}=\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(1\right)\)

Tương tự ta có: 

\(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\Rightarrow M\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{16}.4.4=1\)

alibaba nguyễn
12 tháng 10 2017 lúc 15:23

Để đơn giản bài toán thì ta xét trường hợp cá biệt. \(x=y\) thì đề ban đầu trở thành.

\(x,z>0,\frac{2}{x}+\frac{1}{z}=4\)

Đễ thấy \(\frac{1}{z}< 4\)

\(\Leftrightarrow z>0,25\)

Với \(z\) càng gần bằng 0,25 thì \(\frac{1}{z}\)càng gần với 4

\(\Rightarrow\frac{2}{x}=4-\frac{1}{z}\) càng gần = 0 

\(\Rightarrow x\)càng lớn

\(\Rightarrow M\) càng bé nhưng giá trị chỉ dần về 0 chứ không thể bằng 0 được. 

Vậy đề trên là sai. 

Ác Quỷ Bóng Đêm
Xem chi tiết
Neet
31 tháng 8 2016 lúc 20:58

ta có: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)(dấu = xảy ra khi \(\left(y+z\right)^2=4x^2\)↔y+z=2x)

tương tự ta có:\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)(dấu = cũng xảy ra khi x+z=2y;x+y=2z)

cộng từng vế ta có:P+\(\frac{x+y+z}{2}\ge x+y+z\)

→P\(\ge\frac{x+y+z}{2}\)mà x+y+x=1

\(P\ge\frac{1}{2}\)\(\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}\)→x=y=z=1/3

Bưu Ca
Xem chi tiết
Nguyễn Thị Ngọc Thơ
10 tháng 11 2019 lúc 17:26

\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)

Tương tự và cộng lại:

\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)

\("="\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Nguyễn Anh Dũng An
Xem chi tiết