Chứng tỏ 1/n(n+1) = 1/n - 1/n+1
Tính
A=1/3.4 + 1/4.5 +...+ 1/9.10
a) chứng tỏ rằng với n thuộc N, n khác 0
1/ n(n+1)= 1/n - 1/ n+1
b) áp dụng kết quả ở câu a) để tính nhanh:
A= 1/ 1.2+1/ 2.3+ 1/3.4+......+1/9.10
a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N n khác 0
b) A=1/1*2+1/2*3+1/3*4+...+1/9.10
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
A=1-1/10=9/10
Vậy A = 9/10
Chứng tỏ rằng n thuộc N , n khác 0 thì
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng câu trên tính nhanh;
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
a) Chứng tỏ rằng với n\(\in\)N,n\(\ne\)0 thì:
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
b) áp dụng kết quả ở câu a) đẻ tính nhanh :
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
a)\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{n+1-1}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)
b)\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{8}\)
\(\Rightarrow A=\frac{3}{8}\)
Tìm n thuộc N :
1/3.4 + 1/4.5 + 1/5.6 + .... + 1/n( n+1 ) = 3/10
\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + .....+\(\dfrac{1}{n.(n+1)}\) = \(\dfrac{3}{10}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\) +......+ \(\dfrac{1}{n}-\dfrac{1}{n+1}\) = \(\dfrac{3}{10}\)
\(\dfrac{1}{3}-\dfrac{1}{n+1}\) = \(\dfrac{3}{10}\)
\(\dfrac{1}{n+1}\) = \(\dfrac{1}{3}-\dfrac{3}{10}\)
\(\dfrac{1}{n+1}\) = \(\dfrac{1}{30}\)
n + 1 = 30
n = 30 - 1
n = 29
Kết luận n = 29 là giá trị thỏa mãn yêu cầu đề bài.
Tìm n thuộc n :
1/3.4 + 1/4.5 + 1/5.6 + ... + 1/n( n+1 ) = 3/10
\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\dfrac{1}{3}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\dfrac{-1}{\left(n+1\right)}=\dfrac{-1}{30}\)
\(-n-1=-30\)
-n = -29
n = 29
1/3.4 +1/4.5 + 1/5.6 + .. + 1/n.(n+1) = 3/10
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{3}{10}\)
Ta có: \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\dfrac{1}{3}-\dfrac{1}{x+1}=\dfrac{3}{10}\)
\(\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{3}{10}\)
\(\dfrac{1}{x+1}=\dfrac{1}{30}\)
\(\Rightarrow x+1=30\)
\(x=30-1\)
\(x=29\)
Vậy ...
a) Chứng tỏ rằng với \(n\in\mathbb{N},n\ne0\) thì :
\(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
b) Áp dụng kết quả ở câu a) để tính nhanh :
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{9.10}\)
a) \(\forall\)n \(\in\) N* ta có :
\(\dfrac{1}{n\left(n+1\right)}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{n+1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (đpcm)
Cho công thức: 1/1(n+1)=1/n-1/n+1
Hãy tính tổng sau: A= 1/1.2+1/2.3+1/3.4+...+1/9.10
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}\)
\(=\frac{10}{10}-\frac{1}{10}\)
\(=\frac{9}{10}\)
P/s: E nên lưu ý các dạng bài này nhé! Đây thường là câu cuối trong đề thi cuối kì đấy!
Bài làm:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Leftrightarrow A=1-\frac{1}{10}\)
\(\Leftrightarrow A=\frac{9}{10}\)
Vậy \(A=\frac{9}{10}\)
tìm n thuộc N biết:
\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+....+\(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{3}{10}\)
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{n+1}=\dfrac{1}{30}\)
\(\Rightarrow n+1=30\)
\(\Rightarrow n=29\)
Vậy n = 29.