ΔABC có \(\widehat{B}\)= \(\widehat{2C}\) , BD là phân giác. Trên tia đối của tia BD lấy BM=AC. Trên tia đối của tia CB lấy CN=AB. I là trung điểm MN. Chứng minnh AI\(\perp\)MN
Tam giác ABC có góc B = 2 lần góc C. BD là tia phân giác góc B( D thuộc AC). Trên tia đối của tia BD lấy điểm M, sao cho BM = AC; trên tia đối của tia CB lấy điểm N sao cho CN = AB. Gọi I là trung điểm MN. Chứng minh rằng AI vuông góc với MN.
Tam giác ABC có góc B = 2 lần góc C. BD là tia phân giác góc B( D thuộc AC). Trên tia đối của tia BD lấy điểm M, sao cho BM = AC; trên tia đối của tia CB lấy điểm N sao cho CN = AB. Gọi I là trung điểm MN. Chứng minh rằng AI vuông góc với MN.
Tam giác ABC có góc B = 2 lần góc C. BD là tia phân giác góc B( D thuộc AC). Trên tia đối của tia BD lấy điểm M, sao cho BM = AC; trên tia đối của tia CB lấy điểm N sao cho CN = AB. Gọi I là trung điểm MN. Chứng minh rằng AI vuông góc với MN.
Cho tam giác ABC có AB=AC, M là trung điểm BC
a)Chứng minh AM là tia phân giác của \(\widehat{BAC}\) (khỏi cần làm nha)
b)Chứng minh \(AM\perp BC\)(khỏi cần luôn)
c)Trên tia đối của BC lấy điểm P, trên tia đối của CB lấy điểm N sao cho BP=CN. Chứng minh AP=AN
D)Gọi E là trung điểm của AB, F là trung điểm của AC, CE và BF cắt nhau tại I. Chứng minh A, I, M thẳng hàng.
(mọi người giúp mình câu c,d với ạ ko cần vẽ hình nha! cảm ơn mọi người nhiềuu)
Cho \(\Delta ABC\) có AB = AC. Gọi I là trung điểm của BC, trên tia đối cuả tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho CN = BM.
a, Chứng minh: \(\widehat{ABI}=\widehat{ACI}\) và AI là tia phân giác của \(\widehat{BAC}\)
b, Chứng minh : AM = AN
c, Từ B kẻ \(BH\perp AM\) , kẻ \(CK\perp AN\). C/minh BH = CK
Cho tam giác ABC có \(\widehat{B}=2\widehat{C}\) . Tia phân giác góc B cắt AC ở D . Trên tia đối của tia BD lấy điểm E sao cho BE=AC . Trên tia đối của tia CB lấy điểm K sao cho CK = AB . Chứng minh AE = AK
Cho ΔABC có AB=AC, I là trung điểm của BC.
a) CM: ΔABI=ΔACI
b) CM: AI\(\perp\)BC
c) Trên tia đối của tia BC, lấy điểm M và trên tia đối của tia CB lấy điểm N sao cho BM=CN. Cm: AM=AN
d) Kẻ \(BH\perp AM\left(H\in AM\right),CK\perp AN\left(N\in AN\right).BH\) cắt AI tại O. Cm: C,K,O thẳng hàng.
a: Xét ΔAIB và ΔAIC có
AB=AC
IB=IC
AI chung
=>ΔAIB=ΔAIC
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc CB
c: Xét ΔABM và ΔACN co
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
Cho tam giác ABC với AB = AC . lấy I là trung điểm của BC .
a) Chứng minh : ∆AIB = ∆AIC
b) Chứng minh tia AI là tia phân giác của góc BAC
c) Trên tia đối của tia BC lấy điểm M, trên tia đối tia CB lấy điểm N sao cho CN = BM. Chứng minh : AM = AN
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Cho ΔABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.
a) Chứng minh: ΔAMB= ΔACM. Từ đó suy ra AM ⊥ BC
b) Chứng minh: ΔABD= ΔACE. Từ đó chứng minh AM là trung trực của DE
c) Kẻ BK ⊥ AD (K AD). Trên tia đối của BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE. Chứng minh: \(\widehat{MAD}=\widehat{MBH}\)
d) Chứng minh: DN ⊥ DH