cho a>0,b>0.CMR:\(\frac{a}{b}+\frac{b}{a}\ge2\)
Bài 1 : Cmr :
a, \(a+\frac{1}{a-1}\ge3\) với mọi a>1
b, \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a \(\in R\)
Bài 2 : Cho a>0. Cmr \(\frac{a^2+5}{\sqrt{a^2+4}}\ge2\)
Bài 3 : Cho a,b,c>0. Cmr \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< 2\)
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
Cho a, b, c, d >0. CMR:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
a) Cho a > b ; b > 0 . CMR: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)
\(=\frac{a^2}{ab}+\frac{b^2}{ab}+\frac{2ab}{ab}\)
\(=\frac{\left(a^2+2ab+b^2\right)}{ab}\)
\(=\frac{\left(a+b\right)^2}{ab}\ge0\)( luôn đúng với a >b > 0 )
Dấu "=" xảy ra khi : \(a+b=0\Leftrightarrow a=-b\)
Vậy ....
Easy làm luôn :)
a0 Ta có: \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow\frac{a^2+b^2}{ab}\ge2\)
vì \(a>0;b>0\left(gt\right)\Rightarrow ab>0\)nên ta có:
\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow ab.\frac{a^2+b^2}{ab}\ge2ab\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Vậy
Cho a,b khác 0. CMR \(\frac{a^2}{b^2}-\frac{b^2}{a^2}-1\ge2\left(\frac{a^2+b^2}{ab}\right)\)
Cho phân số :\(\frac{a}{b}\left(a,b>0\right)\)
CMR: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Quy đồng mẫu số ở vế trái:\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\)
Ta cần chứng minh : \(\frac{a^2+b^2}{ab}\)\(\ge\)2 \(\Leftrightarrow\)\(a^2+b^2\ge2ab\)
Chứng minh bất đẳng thức Cosi(lớp 8) : Ta luôn có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow\)\(a^2-2ab+b^2\ge0\)\(\Rightarrow a^2+b^2\ge0+2ab=2ab\)(1)
Từ (1) suy ra bài toán luôn đúng với mọi a,b hay \(\frac{a^2+b^2}{ab}\ge2\)hay \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Rightarrow\)đpcm.
Cho phân số \(\frac{a}{b}\) ( a, b \(\in\) Z, a > 0, b = 0, a > b ). CMR: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Đề sai rồi bạn ơi, nếu b = 0 thì phân số a/b đâu có nghĩa.
sửa lại b>0
Ta có ta có a/b + b/a \(\ge\) 2 (a^2 + b^2 )/ab \(\ge\) 2 a^2 + b^2 \(\ge\) 2ab =>a^2 -2ab + b^2 \(\ge\) 0 =>(a - b)^2 >= 0 luôn đúng suy ra điều phải chứng minh dấu '" = "' xảy ra khi và chỉ khi a = b
\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( *Luôn đúng* )
Cho a,b,c > 0 thỏa mãn a + b + c > 1
CMR: \(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge2\)
mik ví dụ 1 biểu thức nha
a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c
tương tự với mấy biểu thức còn lại
dương cho a,b,c > 0 thỏa mãn a+b+c=1. CMR :
\(\frac{c+ab}{a+b}+\frac{a+bc}{b+c}+\frac{b+ac}{a+c}\ge2\)
Đây này bạn:
Câu hỏi của tran thi mai anh - Toán lớp 9 | Học trực tuyến
Cho a,b,c>0. CMR: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\)