ai nhanh mk tick nha !!!!!!!!!!!!
1. Tìm tất cả các phân số = phân số 34/51 và có mẫu là số tự nhiên ngỏ hơn 16
2. Cho A= 5/n-4
a, Tìm n thuộc Z để A là phân số
b, tìm n thuộc z để a là số nguyên
3. Cho B=x-2/x+51
a, tìm x thuộc z để b là phân số
b, tìm x thuộc z để b là số nguyên
cho biểu thức a=5/n+2
a. Tìm n để A là phân số
b. Tìm n thuộc z để A thuộc z
c Tìm n thuộc z để a là phân số tối giản
bài này dễ mà
a, Để a là phân số thì
\(n+2\ne0\)\(\Leftrightarrow n\ne-2\)
b, Để \(A\in Z\)\(\Rightarrow5⋮n+2\)
Hay \(n+2\inƯ\left(5\right)\)
Ta có các \(Ư\left(5\right)\in\left\{1;-1;5;-5\right\}\)
Vậy có các trường hợp :
n + 2 = 1 => n = -1
n + 2 = -1 => n = -3
n + 2 = 5 => n = 3
n + 2 = -5 => n = -7
Vậy để \(A\in Z\Rightarrow n\in\left\{-1;-3;3;-7\right\}\)
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
CHO A=N+10/N+1 VỚI N THUỘC Z
a) TÌM SỐ NGUYÊN N ĐỂ A LÀ PHÂN SỐ ?
b) TÌM PHÂN SỐ A KHI N =1 ; N=5;N=-6
c) TÌM N THUỘC Z ĐỂ PHÂN SỐ A CÓ GIÁ TRỊ LÀ SỐ NGUYÊN
Cho phân số \(\frac{a+b}{c+d}\) ( a , b , c , d thuộc Z ) Biết cả tử và mẫu của phân số chia hết cho k thuộc Z . Chứng minh ( ad - bc ) chia hết cho k
Lời giải:
Ta có các điều sau:
\(\left\{\begin{matrix} a+b\equiv 0\pmod k\\ c+d\equiv 0\pmod k\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a\equiv -b\pmod k\\ d\equiv-c\pmod k\end{matrix}\right.\)
Áp dụng tính chất nhân của mo- đun:
\(\Rightarrow ad\equiv (-b)(-d)=bd\pmod k\) . Suy ra $ad-bc$ chia hết cho $k$
Do đó ta có đpcm
Cho A=5 phần n-4
a, tìm n thuộc Z dể A là phân số
b, x thuộc Z để A thuộc Z
Cho biểu thức a=7/b-5
a)Tìm n thuộc Z để A là phân số
b)Tìm n thuộc Z để A là 1số nguyên
CÓ thể có phân số a/b (a,b thuộc Z, b khác 0) sao cho: a/b=a*m/b*n (m,n thuộc Z; m,n khác0 và m khác n) hay ko?
Cho biểu thức A =n-2/n+6:a)tìm n thuộc Z để A là phân số;b)Tìm n thuộc Z để A là một số nguyên.
a, để A là phân số <=> n+6 khác 0 <=> n khác -6
b, A=n-2/n+6 =(n+6-8)/(n+6)=1- 8/(n+6)
<=> n+6 thuộc Ư(8)={-8;-4;-2;-1;1;2;4;8}
<=> n={-14;10;-8;-7;-5;-4;-2;2}