Tìm GTLN và GTNN của biểu thức \(A=\frac{3x^2-2x+3}{x^2+1}\)
tìm GTNN của : |3x-7|+|3x-2|+8
cho x-y =2 . Tìm GTNN của biểu thức B= |2x+1|=|2y+1|
tìm GTLN của : x+\(\frac{1}{2}\)-|x-\(\frac{2}{3}\)|
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Tìm GTLN hoặc GTNN của biểu thức
\(A=\frac{2x^2+6x+10}{x^2+3x+3}\)
\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)
Để A đạt GTLN thì x2+3x+3 bé nhất
mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)
Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)
lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)
Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
1) GTNN của biểu thức A=\(\frac{x^2+2x+1}{x^2-2x+3}\)
2) với \(0\le x\le0.5\) tìm GTLN của biểu thức \(28x^3-24x^2+3x+1\)
AI GIỎI KO GIÚP MK MẤY BÀI NÀY VỚI
Tìm GTLN và GTNN của biểu thức A=\(\frac{x^3-2x}{x^3-1}\)
Tìm GTNN hoặc GTLN của các biểu thức :
a,A=\(\left(2x-3\right)^2-\frac{1}{2}\)
b,B=\(\frac{1}{2}-\left|2-3x\right|\)
a) \(A=\left(2x-3\right)^2-\frac{1}{2}\)
Vì: \(\left(2x-3\right)^2\ge0\)
=> \(\left(2x-3\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Vậy GTNN của A là \(-\frac{1}{2}\) khi \(x=\frac{3}{2}\)
b) \(B=\frac{1}{2}-\left|2-3x\right|\)
Vì: \(\left|2-3x\right|\ge0\)
=> \(-\left|2-3x\right|\le0\)
=> \(\frac{1}{2}-\left|2-3x\right|\le\frac{1}{2}\)
Vậy GTLN của B là \(\frac{1}{2}\)
\(y=\frac{3x^2+10x+20}{x^2+2x+3}\)
TÌM GTLN,GTNN CỦA BIỂU THỨC TRÊN
Tìm GTLN và GTNN của biểu thức
a . 2./3x-2/-1
b . 5./1-4x-1
c . 5-/2x-1/
d . 1/ /x-2/+3