Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
buidangduong
Xem chi tiết
Phươngg Phương
Xem chi tiết
Nguyễn Ngọc Bảo Ngân
30 tháng 12 2020 lúc 20:34

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

Khách vãng lai đã xóa
LÊ HOÀNG ANH
Xem chi tiết
Đào Nguyễn Việt Anh
23 tháng 3 2019 lúc 23:37

Vì x-y=0

=> x = y

Ta có:

x3+xy2-x2y-y3=3=(x3-x2y)+(xy2-y3)+3=x2(x-y) + y3(x-y) +3= x3.0 + y3.0+3=0+0+3=3

XONG

Hồ Văn Đạt
Xem chi tiết
Phan Hà Phương
Xem chi tiết
Nhok Bé
Xem chi tiết
Trương Huy Hoàng
10 tháng 3 2021 lúc 23:02

Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4 

= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)

= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)

= (x + y + 1)(x2 - y2) + 2(0 + 1)

= 0(x2 - y2) + 2.1

= 2

Vậy H = 2

Chúc bn học tốt!

Nhok Bé
10 tháng 3 2021 lúc 22:36

Help mik lẹ với ;-;

Phan Luong Diem Kieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 23:06

a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)

\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)

\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)

\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)

\(=-12x^3+16x^2y-7xy^2\)

\(\left(x-2\right)^2+y^2=0\)

mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)

nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)

=>x=2 và y=0

Thay x=2 và y=0 vào F, ta được:

\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)

\(=-12\cdot2^3\)

\(=-12\cdot8=-96\)

b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=x^3+y^3+3\left(8x^3-y^3\right)\)

\(=x^3+y^3+24x^3-3y^3\)

\(=25x^3-2y^3\)

Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)

Thay x=5 và y=-3 vào G, ta được:

\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)

\(=25\cdot125-2\cdot\left(-27\right)\)

\(=3125+54=3179\)

c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)

\(=x^3+27y^3+27x^3-y^3\)

\(=28x^3-26y^3\)

Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)

Thay x=2 và y=1 vào H, ta được:

\(H=28\cdot2^3-26\cdot1^3\)

\(=28\cdot8-26\)

=198

Nguyễn Linh
Xem chi tiết
le thi thanh huyen
Xem chi tiết
le thi thanh huyen
9 tháng 8 2017 lúc 10:15

toán lớp 7 đấy mình ấn lộn