cho tam giác ABC có AB=6cm, AC=8cm, BC=10cm
a. CM: ABC là tam giác vuông
b.Gọi M là trung điểm BC kẻ MH vuông góc AC. Lấy K đối xứng H qua M. CM: BKCH là hình bình hành và ABKH là hình chữ nhật
c.CM: G là trọng tâm của tam giác ABC
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Kẻ HD vuông góc với AB tại D và HE vuông với AC tại E
a). CM: tứ giác ADHE là hình chữ nhật
b) Gọi F là điểm đối xứng của H qua D. CM: tứ giác AEDF là hình bình hành
c) Gọi M là trung điểm của BC. CM: AM vuông góc với AF
Cho ∆ABC vuông tại A (AB < AC ) lấy M là trung điểm của BC, vẽ MH vuông góc AB, MK vuông góc AC
a) Chứng minh: AHMK là hình chữ nhật, Tính HK. Biết AB = 6cm, AC = 8cm
b) Lấy N đối xứng với M qua H . Chứng minh : MNAC là hình bình hành.
c) Tia CH cắt BN tại I. Chứng minh : BI = 2.IN
GIÚP MIK VỚI MNG^^
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
Vì \(\widehat{MHA}=\widehat{MKA}=\widehat{KAH}=90^0\) nên AHMK là hcn
Do đó \(AM=KH\)
Mà AM là tt ứng cạnh huyền BC nên \(AM=HK=\dfrac{1}{2}BC=\dfrac{5}{2}\)
b, Vì M là trung điểm BC, MH//AC (⊥AB) nên H là trung điểm AB
Mà H là trung điểm MN nên MNAC là hbh
Cho tam giác ABC có AB=6cm ; AC=8cm :=;BC=10cm
a)CM: tam giác ABC vuông tại A
b)vẽ tia BD là PG của góc ABC ( D thuộc AC) , qua điểm D kẻ đường thẳng DE vuông góc BC (E thuộc BC) và cắt đường thẳng AB tại F . CM: tam giác FDC cân
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)
Suy ra: DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(Cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC, gọi D là điểm đối xứng của A qua M.
a) Cm: ABDC là hình chữ nhật
b) Gọi E là điểm đối xứng của B qua AC. Cm: A là trung điểm của BE
c) Cm: CEAM là hình thang
d) Cm: CEAD là hình bình hành
e) Kẻ BF vuông góc CE tại F. Cm: góc AFD = 90 độ
f) Kẻ AK vuông góc BC tại K. Gọi O và Q lần lượt là trung điểm AC và AB, OQ cắt AK ở S. Cm: CS vuông góc với EK
a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.
b/ Dễ thấy.
c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE => AECM là hình thang
d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành
e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)
Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM
=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)
Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ
=> góc AFB + góc DFB = góc AFD = 90 độ
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!
Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.
a) CM: OEFC là hình thang
b) CM: OEIC là hình bình hành.
c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật.
d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.
a) CM: ADCH là hình chữ nhật.
b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.
c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.
d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)
Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.
a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.
b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.
c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Cho tam giác ABC vuông cân tại A có AB=8cm
a)Tính diện tích tam giác ABC
b)Trên cạnh BC lấy điểm M( khác B và C ), từ M lần lượt vẽ MH và MK vuông góc với cạnh AB và AC ( điểm H thuộc AB và điểm K thuộc AC )
CM: Tứ giác AHMK là Hình Chữ Nhật
c)Gọi D là điểm đối xứng của M qua K.CM: tứ giác AHKD là Hình Bình Hành
d)Gọi O là t/điểm của cạnh BC.CM: Tam Giác HOK vuông cân
Cho tam giác ABC vuông cân tại A có AB=8cm
a)Tính diện tích tam giác ABC
b)Trên cạnh BC lấy điểm M( khác B và C ), từ M lần lượt vẽ MH và MK vuông góc với cạnh AB và AC ( điểm H thuộc AB và điểm K thuộc AC )
CM: Tứ giác AHMK là Hình Chữ Nhật
c)Gọi D là điểm đối xứng của M qua K.CM: tứ giác AHKD là Hình Bình Hành
d)Gọi O là t/điểm của cạnh BC.CM: Tam Giác HOK vuông cân
Chào cả nhà em là member mới xin hỏi giải giúp em bài toán hình học này:
Bài 1: Cho tam giác ABC có trung tuyến AM . Gọi E là điểm đối xứng với A qua M .
a) : Chứng minh rằng tứ giác ABEC là hình bình hành
b): Tìm điều kiện của tam giác ABC để tứ giác ABEC là hình chữ nhật , thoi , vuông
Bài 2 : Cho tam giác ABC vuông tại A. M là trung điểm của BC , kẻ MH vuông AC ,MK vuông với AB
a) : chứng minh AKMH là hình chữ nhật
b) : gọi P là điểm đối xứng của M qua H . Chứng minh AMCP là hình thoi
Bài 3 : Cho tam giác ABC vuông tại A ,có M la trung điểm của BC
Biết AB = 5 cm , AC = 12 cm , góc A = 90 độ
Tính AM ?
Bài 1:
a) Xét t, giác ABEC có
M-tđ BC(AM- trung tuyến)
M-tđ AE(E đx A qua M)
BC cắt AE tại M
=> ABEC là hình bình hành (dhnb)
b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)
Vậy t.giác ABC cân tại A để ABEC là hình thoi
HBH ABEC là hình chữ nhật
<=> A=90 độ (dhnb)
Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật
Bài 2:
Xét t.giác AKMH có
A=90*
H=90*(MHvg góc AC)
K=90*(MK vg góc AB)
=> AKMH là hình chữ nhật(dhnb)
b) AM là trung tuyến ứng vs cạnh huyền
=> AM=MC
=> tam giác AMC cân tại M
MH là đg cao
=> MH là trung tuyến
=> H - tđ AC
Xét t,giác AMCP có
H- tđ Ac( cmt)
H - tđ MP ( P đx M qua H)
AC cắt MP tại H
=> AMCP là hình bình hành (dhnb)
lại có AM=MC( cmt)
=> AMCP là hình thoi ( dhnb)
Bài 3:
Xét tam giác ABC vg tại A có
AB2 + AC2 = BC2
TS: 52 + 122= BC2
BC2= 25+144
=> BC= 13
Am là trung tuyến
=> AM=1/2BC
=> AM =7,5
Cho tam giác ABC vuông tại A (AC<AB). Gọi M là trung điểm BC. Kẻ MH vuông góc với AB, MK vuông góc với AC.
a) C/m AKMH là hình chữ nhật
b) Gọi N là điểm đối xứng của M qua H. Tam giác ABC cần điều kiện gì để AMBN là hình vuông
c) Trên cạnh AB lấy D sao cho AD=AC. Gọi E là giao điểm của CD và MK. Kẻ AF vuông góc với BC. Tính góc AFE?