Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Minh Hằng
Xem chi tiết
Nguyễn Hiền Sĩ
Xem chi tiết
Anh Mai
Xem chi tiết
Anh Mai
Xem chi tiết
Anh Mai
Xem chi tiết
VN in my heart
Xem chi tiết
Thắng Nguyễn
29 tháng 6 2016 lúc 16:02

Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :

\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)

\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)

\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)

Thắng Nguyễn
29 tháng 6 2016 lúc 15:22

chờ tí tui lm cho

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 3 2019 lúc 14:55

Đáp án C

Ta có: 2 x + 1 4 y 2 x + y ≥ 2 + 1 2 2  (Bất đẳng thức Bunhia Scopky).

(ngoài ra các em có thể thế và xét hàm).

Do đó P ≥ 5.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2019 lúc 10:56

Đáp án C

Áp dụng bất đẳng thức Bunhiacopxki,

ta có  2 x + 1 4 y 2 x + y ≥ 2 + 1 2 2 ⇒ P ≥ 5

Mai Thị Ngọc Anh
Xem chi tiết