cho x,y là các số dương thoả 2x+y+xy=6. Tìm giá trị nhỏ nhất của biểu thức \(P=8x^3+y^3\)
Cho hai số dương x, y thoả xy=3. Tìm giá trị nhỏ nhất của biểu thức P= 3/x +9/y -26/3x+y
Cho các số thực dương x,y thoả: 3 ) = 2x + 2 giá trị nhỏ nhất của biểu thức P = là ?
cho x, y là các số thực dương thoả mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3^{ }}=\frac{1}{xy}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Cho x, y là các số thực dương thoả mãn x + y = 1.
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :
\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)
\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)
Cho các số thực dương x, y thoả mãn 2 x + y = 5 4 . Tìm giá trị nhỏ nhất P min của biểu thức P = 2 x + 1 4 y .
A. P min không tồn tại
B. P min = 65 4
C. P min = 5
D. P min = 34 5
Đáp án C
Ta có: 2 x + 1 4 y 2 x + y ≥ 2 + 1 2 2 (Bất đẳng thức Bunhia Scopky).
(ngoài ra các em có thể thế và xét hàm).
Do đó P ≥ 5.
Cho các số thực dương x, y thoả mãn 2 x + y = 5 4 . Tìm giá trị nhỏ nhất P min của biểu thức P = 2 x + 1 4 y
A. P min không tồn tạ
B. P min = 65 4
C. P min = 5
D. P min = 34 5
Đáp án C
Áp dụng bất đẳng thức Bunhiacopxki,
ta có 2 x + 1 4 y 2 x + y ≥ 2 + 1 2 2 ⇒ P ≥ 5
cho x, y là các số thực nguyên thoả mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức B= 1/(x^3+y^3) +1/xy