Viết chương trình chạy: Tìm số lớn nhất trong dãy số A= \(a_1+a_2+a_3+...+a_n\) (n ≥ 1)
Tìm số nguyên dương n lớn nhất / 2013 viết dc dưới dạng \(a_1+a_2+a_3+...+a_n\) trong đó \(a_1;a_2;a_3;...;a_n\) là các hợp số
tìm số nguyên dương n lớn nhất sao cho 2013 viết được dưới dạng \(a_1+a_2+a_3+...+a_n\) trong đó \(a_1;a_2;a_3;...;a_n\)đều là các hợp số
tìm số nguyên dương n lớn nhất sao cho 2013 viết được dưới dạng \(a_1+a_2+a_3+...+a_n\) trong đó \(a_1;a_2;a_3;...;a_n\) đều là các hợp số
tìm số nguyên dương n lớn nhất sao cho 2013 viết được dưới dạng \(a_1+a_2+a_3+...a_n\) trong đó \(a_1;a_2;a_3;...;a_n\) đều là các hợp số
tìm số nguyên dương n lớn nhất sao cho 2013 viết được dưới dạng \(a_1+a_2+a_3+...+a_n\) trong đó \(a_1;a_2;a_3;...;a_n\) đều là các hợp số
Tìm số nguyên dương n lớn nhất sao cho 2013 viết dc dưới dạng \(a_1+a_2+a_3+...+a_n\) trong đó \(a_1,a_2,a_3,...,a_n\) là các hợp số
Cho dãy tỉ số bằng nhau \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}\) biết \(a_1+a_2+a_3+...+a_n\ne0;a_1=\sqrt{3}\)
Tính tổng \(a_1+a_2+a_3+...+a_n\)
\(Cho\) \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{n-1}}{a_n}=\dfrac{a_n}{a_1}\). Và \(a_1+a_2+...+a_n\ne0;a_1=-\sqrt{5}\). Tính \(a_2;a_3;...a_n=?\)
Chứng minh rằng với các số thực dương \(a_1,a_2,a_3,...a_n\)thì:
\(\sqrt[n]{\frac{a_1^2+a_2^2+a_3^2+...+a_n^2}{n}}\)\(\ge\frac{a_1+a_2+a_3+...+a_n}{n}\)\(\ge\sqrt[n]{a_1a_2a_3...a_n}\)\(\ge\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}\)
Cái đầu tiên là \(\sqrt[n]{\frac{a_1^n+a_2^n+a_3^n+...+a_n^n}{n}}\)nhé.