Cho \(\Delta ABC\), trên tia đối của tia AB lấy điểm E, trên tia đối của tia AC lấy điểm D. Các tia phân giác của \(\widehat{ACB}\)và\(\widehat{AED}\)
cắt nhau ở F. CMR: \(\widehat{ÈFC}\)=\(\frac{\widehat{ABD}+\widehat{ADE}}{2}\)
. Cho tam giác ABC . Trên tia đối của AB lấy E, trên tia đối của tia AC lấy D. Gọi M là giao điểm của 2 tia phân giác của \(\widehat{ACB}\) và góc \(\widehat{AED}\) . Chứng minh rằng EMC= \(\dfrac{\widehat{ABC}+\widehat{ADE}}{2}\)
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D. Từ D kẻ đường thẳng song song với BC cắt tia đối AC tại E. Hai tia phan giác của hai góc AED và góc ABC cắt nhau tại O.
Chứng minh góc BOE = \(\frac{1}{2}\) ( \(\widehat{ABC}+\widehat{ACB}\)
Kẻ OF//BC(F thuộc AC)
=>OF//DE//BC
DE//BC
=>góc DEA=góc ACB
=>góc DEO=1/2*góc ACB
ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF
=>góc EOF=1/2*góc ACB
=>góc DEO=góc EOF
OF//BC
=>góc FOB=góc OBC=1/2góc ABC
góc BOE=góc BOF+góc EOF
=1/2(góc ABC+góc ACB)
Cho tam giác ABC có AB < AC . Trên tia đối của tia AB lấy điểm D sao cho AB = AD . Trên tia đối của tia AC lấy điểm E sao cho AE = AC a) CM : BE = DC
b ) Kẻ tia phân giác góc BDE cắt BC tại I . CM : tam giác BDI cân.
c ) Kẻ tia phân giác góc ACB cắt DI tại F . CM \(2.\widehat{CFD}=\widehat{CED}+\widehat{CBD}\)
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
098765432rtyuiorewerio65yuy5t
yyyyyyyyyyyyyyyyyyyyyyy
cho \(\Delta ABC\)trên tia đối của AB lấy , từ D kẻ đường thẳng BC cắt tia đối của AC tại E . Hai tia phân giác của hai góc \(\widehat{ADE},\widehat{ABC}\)cắt nhau tại O . Chứng minh rằng \(\widehat{BOE}=\frac{1}{2}\widehat{ABC}+\widehat{ACB}\)
Cho tam gác ABC. Trên tia đối của tia AB lấy E, trên tia đối của tia AC lấy điểm D. Các tia phân giác của các góc ACB và AED cắt nhau ở F. Chứng minh: góc EFC= (góc ABD + góc ADE):2
Cho tam giác ABC.Trên tia đối của tia AB lấy điểm E, trên tia đối tia AC lấy điểm D. Gọi M là giao điểm của 2 tia phân giác của \(\widehat{ACB}\)
\(\widehat{AED}\)..CMR:
\(\widehat{EMC}=\frac{\widehat{ABC}+\widehat{ADE}}{2}\)
Cho tam giác ABC có \(\widehat{B}=2\widehat{C}\) . Tia phân giác góc B cắt AC ở D . Trên tia đối của tia BD lấy điểm E sao cho BE=AC . Trên tia đối của tia CB lấy điểm K sao cho CK = AB . Chứng minh AE = AK
16. Cho tam giác ABC , treeb tia đối của tia AB lấy điểm E , trên tia đối của tia AC lấy điểm D , các tia phân giác của các góc ACB^ và AED^ cát nhau ở F , BCM^ = C2 ; AEN^ = E1 ;NED^ = E^2 . Chứng minh rằng :
a, B^ + C^1 = F^ + E^1
b , D^ + E^2 = F^ + C^2
c , EFC^ = ABD^ + ADE^ : 2
Cho tam giác ABC có AB AC. vẽ tia đối của tia AB, trên đó lấy điểm D sao cho AD AC. Vẽ tia đối của AC, trên đó lấy điểm E sao cho AE AB. So sánh \(\widehat{ABC}\) và\(\widehat{AED}\)