Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuân Trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 13:58

undefined

Trang Trần
Xem chi tiết
Lê Chí Công
17 tháng 5 2017 lúc 8:59

a, tự lm......

P=x2 / x-1

b, P<1

=> x2/x-1  <1

<=>x2/x-1 -1 <0

<=>x2-x+1 / x-1<0

Vi x2-x+1= (x -1/2 )2+3/4 >0

=> Để P<1

x-1 <0

x <1

c, x2/x-1 = x2-1+1/x-1

             = x+1 +1/x-1

               = 2 +(x-1) + 1/x-1

Áp dụng BDT Cô si ta có :

x-1  + 1/x-1 >hoặc = 2

=> P>= 3

Đầu = xảy ra <=> x=2( x >1)

Vay......

Kudo Shinichi
5 tháng 8 2017 lúc 19:39

làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4

nguyen le duy hung
Xem chi tiết
•Čáøツ
Xem chi tiết
Bùi Anh Tuấn
1 tháng 11 2019 lúc 17:49

\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)

\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)

\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)

\(=\frac{x^2+2}{x^2+1}\)

b, biển đổi \(M=1-\frac{3}{x^2+1}\)

M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất

\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)

\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2

Khách vãng lai đã xóa
Phạm Thị Thúy An
Xem chi tiết
Xuân Trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 13:37

a: \(P=\left(\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1+\sqrt{x}}{x+1}\)

\(=\dfrac{2\sqrt{x}+x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

b: Thay \(x=9+2\sqrt{7}\) vào P, ta được:

\(P=\dfrac{\sqrt{9+2\sqrt{7}}+1}{9+2\sqrt{7}+\sqrt{9+2\sqrt{7}+1}}\simeq0,25\)

Teendau
Xem chi tiết
Nguyễn Tất Đạt
27 tháng 2 2019 lúc 22:15

\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{25}{2}\) (Vì x+y=1)

Vậy Min của bt trên là 25/2. Đạt được khi x=y=1/2.

tran thi mai anh
Xem chi tiết
 Mashiro Shiina
17 tháng 3 2019 lúc 0:50

\(ĐKXĐ:x\ne0;x\ne\pm1\)

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)

\(P=\frac{x^2+x}{x^2-2x+1}:\left[\frac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x^2-1+x+2-x^2}{x^2-x}\right)=\frac{x^2+x}{x^2-2x+1}:\frac{x+1}{x^2-x}\)

\(=\frac{x^2+x}{x^2-2x+1}.\frac{x^2-x}{x+1}=\frac{x^2\left(x^2-1\right)}{\left(x^2-1\right)\left(x-1\right)}=\frac{x^2}{x-1}\)

Khi \(x>1\) thì \(x-1>0\)

\(P=\frac{x^2}{x-1}=\frac{x^2-4x+4+4x-4}{x-1}=\frac{\left(x-2\right)^2}{x-1}+4\ge4\)

\("="\Leftrightarrow x=2\)

Quyết Tâm Chiến Thắng
Xem chi tiết
KAl(SO4)2·12H2O
1 tháng 2 2019 lúc 12:53

làm a thôi nha :D 

a) \(C=\left(\frac{x^2+x}{x^2-2x+1}\right):\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}-\frac{1}{-\left(x-1\right)}+\frac{2-x^2}{x\left(x+1\right)}\right]\)

\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right]\)

\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}+\frac{x+2-x^2}{x\left(x-1\right)}\right]\)

\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)

\(C=\frac{x+1}{x^2-2x+1}.\frac{x^2-1+x+2-x^2}{x-1}\)

\(C=\frac{x+1}{\left(x^2-2x+1\right)}.\frac{1.x}{x-1}\)

\(C=\frac{\left(x+1\right)^2}{x^3-x^2-2x^2+2x+x-1}\)

\(C=\frac{x^2+2x+1}{x^3-3x^2+3x-1}\)

Nguyệt
1 tháng 2 2019 lúc 13:20

a)\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x+1}{x}-\frac{1}{-\left(x-1\right)}+\frac{-x^2+2}{x.\left(x-1\right)}\right]\)

\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x^2-1}{x.\left(x-1\right)}+\frac{x}{x.\left(x-1\right)}+\frac{-x^2+2}{x.\left(x-1\right)}\right]\)

\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x^2-1+x-x^2+2}{x.\left(x-1\right)}\right]\)

\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x+1}{x.\left(x-1\right)}\right]=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right].\left[\frac{x.\left(x-1\right)}{x+1}\right]=\frac{x.\left(x+1\right).x}{\left(x-1\right).\left(x+1\right)}=\frac{x^2}{x-1}\)

b)\(\text{Để B nguyên }\Rightarrow x^2⋮x-1\)

\(x^2=x^2-1+1=\left(x-1\right).\left(x+1\right)+1\)

\(\Rightarrow\text{Để }x^2⋮x-1\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow x\in\left\{2;0\right\}\)