Chứng minh tam giác AMB bằng tam giac DMC
Chững minh tam giác ABC bằng tam giác CAD
Cho tam giác ABC vuông tại A gọi M là trung điểm của BC trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) Chứng minh tam giác AMB bằng tam giác DMC
b) Chứng minh AC=BD và AC//BD
c) Chứng minh tam giác ABC= tam giác DCB. Tính số đo góc BDC
a) Xét tam giác ABM và tam giác DCM có
+ BM=CM ( gt)
+ Góc AMB = góc DMC ( đối đỉnh)
+ AM = DM
=> tam giác ABM = tam giác DCM ( c-g-c)
b) Vì tam giác ABM = tam giác DCM
=> góc BAM = Góc CDM ( 2 góc tương ứng )
Ta có : Góc BAM = Góc CDM ( c/m trên)
Mà góc BAM + CAM = 180độ( 2 góc kề bù ) (1)
góc CDM + BDM = 180độ ( 2 góc kề bù ) (2)
Mà góc BAM = góc CDM
Từ (1) và (2) => Góc CAM = góc BDM
Xét tam giác ACM và tam giác BDM có
+ Góc CAM = BDM ( c/m trên)
+ BM = CM ( gt)
+ góc BMD = góc AMC ( đối đỉnh )
=> Tam giác ACM = tam giác BDM ( g.c.g)
=> AC = BD ( 2 cạnh tương ứng)
c) bạn tự làm ạ . Mình bận
a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có
BM = CM ( gt)
\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )
AM = DM ( gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)
b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có
AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\) ( 2 góc đối đỉnh )
MC = MB ( gt)
=> \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)
=> AC = DB ( 2 cạnh tương ứng )
và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AC // BD
c) +) Theo câu a ta có \(\Delta\)ABM = \(\Delta\)DCM
=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
+) Xét \(\Delta\)ABC và \(\Delta\)DCB có
\(\widehat{ABM}=\widehat{DCM}\) ( cmt)
BC : cạnh chung
\(\widehat{ACM}=\widehat{DBM}\) ( cmt)
=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)
=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )
Mà \(\widehat{BAC}=90^o\) ( gt)
=> \(\widehat{CDB}=90^o\)
Học tốt
Takigawa Maraii
Cho tam giác ABC có AB=AC, M là một điểm nằm trong tam giác sao cho MB=MC,N là trung điểm của BC
a) Chứng minh tam giác AMB= tam giác AMC
b) Chứng minh tam giác ABN bằng tam giac ACN
c) Chứng minh 3 điểm A, M, N thẳng hàng
d) MN là trung trực của BC
cho tam giác ABC có AB=AC , M là trung điểm của BC a, chứng minh tam giác AMB= tam giác AMC b trên tia đối MA ta lấy điểm D . sao cho MA=MD c tam giác AMB = tam giác DMC
â) Xét tam giác AMB và tam giác AMC có:
AB=AC (gt)
BM=CM ( vì M là trung điểm của BC)
AM là cạnh chung
suy ra tam giác AMB=tam giác AMC (c-c-c)
b) Xet tam giac AMB va tam giác DMC có :
MA=MD (gt)
ABM=DCM ( vi la 2goc đối đỉnh)
BM=CM(gt)
suy ra tam giác AMB=tam giác DMC (c-g-c)
Cho tam giác ABC vuông tại A, M là trung điểm cạnh BC. Trên tia MA lấy điểm D sao cho M là trung điểm cua AD
a) Chứng minh tam giac AMB = tam giac DMC
b) Chứng minh DC vuông góc AC
c) AM = 1/2BC
a) Chứng minh tam giac AMB = tam giac DMC
Xét tam giác MAB và tam giác MDC, có
- MA = MD (M là trung điểm AD)
- MB = MD (M là trung điểm BD)
- Góc M đối nhau
=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh) (đpcm)
b) Chứng minh DC vuông góc AC
Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)
=> góc A1 + góc A2 = 90 độ
mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)
=> góc ADC + góc A2 = 90 độ
Xét tam giác CAD,
có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ
=> góc ACD = 90 độ
=> tam giác DAC vuông tại C
Ta có DC vuông góc AC tại C
và BA vuông góc AC tại A
=> BA // DC (đpcm)
c) AM = 1/2BC
Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)
Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:
Xét tứ giác ABDC có:
- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)
- DC // BA
=> tứ giác ABDC là hình bình hành
và có góc A vuông
=> tứ giác ABDC là hình chữ nhật
=> 2 đường chéo của hình chữ nhật là AD = BC
mà M là trung điểm của AD và BC
=> AM = 1/2 BC (đpcm)
Cho tam giác ABC lấy m là trung điểm cạnh BC trên tia đối của ma lấy điểm d sao cho ma = MD A chứng minh tam giác AMB bằng tam giác DMC b) chứng minh AC song song với BD Kẻ AH vuông góc với BC dh vuông góc với BC h k thuộc BC chứng minh BK = CH Gọi I là trung điểm của AC vẽ điểm e sao cho I là trung điểm của be chứng minh c là trung điểm của de
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đo ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
c: Xét ΔAHB vuông tại H và ΔDKC vuông tại K có
AB=DC
góc ABH=góc DCK
Do đo: ΔAHB=ΔDKC
=>AH=DK và BK=CH
cho tam giác ABC vuông tại B có AC=2AB.Tia phân giác của góc A cắt BC tại M qua M kẻ đường vuông góc với AC tại H
a,Chứng minh góc AMB=góc AMH
b,Cứng minh tam giác AMB=tam giac AMH
c, Chứng minh AM=MC
d, Tính góc A,góc B của tam giác ABC
Cho tam giác ABC AB bé hơn AC và M là trung điểm của cạnh BC trên tia đối của tia ma lấy điểm D sao cho ma = MD
a, chứng minh tam giác AMB bằng tam giác DMC
b, chứng minh AC = dB
c, trên tia BA lấy điểm y sao cho AD bằng BC tia phân giác của ACB cắt cạnh AC tại e chứng minh góc BIE bằng góc BCE
░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░███░███░███░███░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░█░░░█░█░░█░░█░█░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░███░███░░█░░██░░░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░█░░░█░█░░█░░█░█░░█░░░░░░░░░░░░░████░░█████░░░██░ ░░░█░░░█░█░███░█░█░░█░░░░░░░░░░░░████░░█████░░░███░ ░░░░░░░░░░░░░░░░░░░░░░░░██░░░░░░████░░█████░░░████░ ░░░░░░░░░░░░░░░░░░░███████░██░░█████░██████░░██░██░ ░░░░░░░░░░░░█████████████░███░██████░█████░░░░░░██░ ░░░░░░░░░███████████████░████░██████░█████░░░░░░██░ ░░░░░░░█████████████████████░██████░██████░░░░░░██░ ░░░░░██████████████████████░███████░█████░░░░░░███░ ░░░░░█████████████████████████████░██████░░░░░████░ ░░░░████████████████████████████████████░░░░░████░░ ░░░░███████████████████████████████████░░░░█████░░░ ░░░░█████░░░░░░░░████████████████████░░░░██████░░░░ ░░░░░██░░░░░░░░░░████████████████████████████░░░░░░ ░░░░░░░░░░░░░░░░░██████████████████████████░░░░░░░░ ░░░░░░░░░░░░░░░░░░░████████████████████░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░█████████████░░░░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░░░░░ ░░░░░░░██░░░░░░░███████░░░░░░███░███░███░█░░░░░░░░░ ░░░░░░███░░░███████░░░░░░░░░░░█░░█░█░░█░░█░░░░░░░░░ ░░░░███████████░░░░░░░░░░░░░░░█░░███░░█░░█░░░░░░░░░ ░░░████████░░░░░░░░░░░░░░░░░░░█░░█░█░░█░░█░░░░░░░░░ ░░████░░░░░░░░░░░░░░░░░░░░░░░░█░░█░█░███░███░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░