Cho tam giác ABC có A vuông. Kẻ AH vuông BC. Biết AB=5, AC=15 tính BC và AH.
Cho tam giác ABC có A vuông. Kẻ AH vuông BC. Biết AB=5, AC=15 tính BC và AH.
ai biết giải giúp minh với:
Câu 1:Cho tam giác ABC có 3 góc nhọn,các đường cao AD,BE,CK cắt nhau tại H.chứng minh
a,tứ giác HECD nội tiếp
b,Tia DA là tia phân giác góc EDK
Cây 2:cho tam giác ABC vuông tai A,biết ab=6cm,ac=8cm
A.tính bc
B,kẻ đường cao AH,tính Ah
Câu 3:Cho tam giác abc vuông tại A,BIẾT AC=4cm,Bc=5cm.
A,Tính cạnh AB
B,kẻ đường cao AH,TÍNH AH
Câu 4:Cho tam giác vuông ABC,vuông tại A(H thuộc BC).bIẾT AB=12CM,AC=5CM.tính BH,CH
Câu 5:cho tam giác ABC vuông tại A,đường cao AH(H THUỘC BC).biết BC=18cm,BH=6cm.Tính độ dài các cạnh AB,AC
Cau 6:Cho tam giác ABC,vuông tại A,biết AB=4cm,đường cao AH=2CM,tính các góc và các cạnh còn lại cua tam giac.?
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
cho tam giác ABC vuông tạiA , kẻ đường cao AH biết AB=4,AC =7,5
a) tính BC , CotB
b)chứng minh AB^2=8/15 BC .AH
a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)
=>\(BC^2=4^2+7,5^2=72,25\)
=>\(BC=\sqrt{72,25}=8,5\)
Xét ΔABC vuông tại A có \(cotB=\dfrac{BA}{AC}\)
=>\(cotB=\dfrac{4}{7,5}=\dfrac{8}{15}\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
Xét ΔABH vuông tại H có \(cotB=\dfrac{BH}{AH}\)
=>\(\dfrac{BH}{AH}=\dfrac{8}{15}\)
=>\(BH=\dfrac{8}{15}\cdot AH\)
\(AB^2=BH\cdot BC=\dfrac{8}{15}\cdot AH\cdot BC\)
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Cho tam giác ABC có A bằng 90 độ Kẻ AH vuông góc với BC ,biết AB = 13 ,AH = 5 .tính BC,BH,AC,CH
Áp dụng định lý Pi-ta-go cho \(\Delta ABH\)vuông tại H ta có :
\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow BH^2=13^2-5^2\)
\(\Leftrightarrow BH^2=144\)
\(\Leftrightarrow BH=12\)
Áp dụng hệ thức lượng trong tam giác ta có :
\(AB^2=BC.BH\)
\(\Leftrightarrow13^2=BC.12\)
\(\Leftrightarrow BC=\frac{169}{12}\)
Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=\left(\frac{169}{12}\right)^2-13^2\)
\(\Leftrightarrow AC^2=\frac{4225}{144}\)
\(\Leftrightarrow AC=\frac{65}{12}\)
Ta có : \(BH+CH=BC\)
\(\Leftrightarrow CH=BC-BH=\frac{169}{12}-12=\frac{25}{12}\)
Vậy \(BC=\frac{169}{12};BH=12;AC=\frac{65}{12};CH=\frac{25}{12}\)
Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC (H thuộc BC). Kẻ HM vuông góc với AB (M thuộc AB). Kẻ HN vuông góc với AC (N thuộc AC). Biết AB= 13 cm; AC= 15 cm; AH= 12 cm
a, Chứng minh tam giác ANH đồng dạng với tam giác AHC
b, Tính HC, AN
c, Chứng minh AM.AB=AN.AC
b, Tính diện tích tam giác AMN
a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có
góc NAH chung
Do đó: ΔANH\(\sim\)ΔAHC
b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
refer
a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có
AM chung
ME=MH
Do đó: ΔAEM=ΔAHM
b: Xét ΔBHE có
BM là đường cao
BM là đường trung tuyến
Do đó: ΔBHE cân tại B
Xét ΔAEB và ΔAHB có
AE=AH
EB=HB
AB chung
Do đó: ΔAEB=ΔAHB
Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900
hay AE⊥EB
tham khảo
a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có
AM chung
ME=MH
Do đó: ΔAEM=ΔAHM
b: Xét ΔBHE có
BM là đường cao
BM là đường trung tuyến
Do đó: ΔBHE cân tại B
Xét ΔAEB và ΔAHB có
AE=AH
EB=HB
AB chung
Do đó: ΔAEB=ΔAHB
Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900
hay AE⊥EB
Cho tam giác ABC có Â vuông. Từ A kẻ AH vuông góc BC. Biết AB=29cm, AC= 40cm, AH= 1/2 AC. Tính BH và HC
Cho tam ABC có góc A tù.Từ A hạ AH vuông góc BC (H thuộc BC.Biết AB =29cm,AC =40 cm và AH =1/2 BC.Tính BH và HC
có ai biết giải bài này k giải hộ mình vs ( mình cảm ơn )
bài 1: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=15cm; HC=16cm. tính BC,AC,AH.
câu 2: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AH=12cm; BC=25cm. tính AB,AC
bài 3: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=6cm; BH=3cm. tính AH,AC,CH.
bài 4: cho tam giác ABC vuông tại A kẻ đường cao AH. tính diện tích tam giác ABC biết AH=12cm; BH=9cm.
bài 5: cho tam giác vuông , biết sỉ số của các cạnh góc vuông là\(\dfrac{5}{12}\) cạnh huyền là 26. tính độ dài các cạnh góc vuông và hình chiếu các cạnh góc vuông trên cạnh huyền.
bài 6: cho tam giác ABC vuông tại A. biết \(\dfrac{AB}{AC}\) =\(\dfrac{5}{7}\). đường cao AH=15cm. tính HB,HC