Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Takaharu Igasaki
Xem chi tiết
Oo Gajeel Redfox oO
8 tháng 5 2016 lúc 23:23

A=(1-\(\frac{1}{4}\))+(1-\(\frac{1}{9}\))+(1-\(\frac{1}{16}\))+...+(1-\(\frac{1}{400}\)).

A=19-(\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\))

Ta thấy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}<1\)

=>A>19-1=18(đpcm)

superman
Xem chi tiết
Phùng Minh Quân
14 tháng 10 2018 lúc 10:58

\(a)\)\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)

\(M=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{400-1}{400}\)

\(M=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{400}\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)

Do từ 2 đến 20 có \(20-2+1=19\) nên : 

\(M=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\)

\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)

\(A>\frac{1}{2}-\frac{1}{21}\)

\(\Rightarrow\)\(M=19-A>19-\frac{1}{2}+\frac{1}{21}=18,5+\frac{1}{21}>8\)

\(\Rightarrow\)\(M>8\) ( đpcm ) 

Còn câu b) bn xem lại đề đi, nếu đề đúng thì mk sai :v 

Chúc bạn học tốt ~ 

zZz Cool Kid_new zZz
21 tháng 1 2019 lúc 15:14

\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}...+\frac{399}{400}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+\left(1-\frac{1}{25}\right)+...+\left(1-\frac{1}{400}\right)\)

\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{20^2}\right)\)

\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)

Đặt \(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{20^2}\)

\(< P=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{20\cdot21}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\)

\(=\frac{1}{2}-\frac{1}{21}\)

\(\Rightarrow M+N>19-\frac{1}{2}+\frac{1}{21}=\frac{37}{2}+\frac{1}{21}>8\)

b sai  đề.chừng nào chữa đề thì làm

Canssan Dra
Xem chi tiết
_Detective_
6 tháng 5 2016 lúc 18:37

Xét A= \(\frac{3}{4}\)\(\frac{8}{9}\) +...+ \(\frac{399}{400}\)

= (1 - \(\frac{1}{2^2}\)) + (1- \(\frac{1}{3^2}\)) +...+ (1- \(\frac{1}{20^2}\))

= (1+1+1+...+1) - (\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\)) Bạn phải mở ngoặc có 19 số 1 nha!

= 19 - (\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\))  

Đặt B =\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\) < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +...+ \(\frac{1}{19.20}\) = 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) +...+ \(\frac{1}{19}\) - \(\frac{1}{20}\) = 1 - \(\frac{1}{20}\) = \(\frac{19}{20}\)

=> A= 19 - B= 18+ 1- \(\frac{19}{20}\) >18 => A>18

Trần Duy Hải Hoàng
Xem chi tiết
ST
16 tháng 11 2017 lúc 12:53

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{400}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)

\(=20-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)< 20\) (1)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

.......

\(\frac{1}{20^2}< \frac{1}{19.20}=\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)

\(\Rightarrow A>20-1=19\) (2)

Từ (1) và (2) => 19 < A < 20 

Vậy...

Trần Duy Hải Hoàng
17 tháng 11 2017 lúc 18:29

số số hạng là 19 chứ ko phải 20 ST

Nguyễn Thị Thanh Hằng
Xem chi tiết
Song ngư công chúa
Xem chi tiết
Vũ Lê Ngọc Liên
Xem chi tiết
Nguyễn Ngọc Quý
4 tháng 3 2016 lúc 18:44

Theo dạng bình phương ở Mẫu

Học dốt :)
Xem chi tiết
Học dốt :)
27 tháng 1 2020 lúc 14:30

Ta có : \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{15}+...+\frac{1}{10000}\right)\)

\(=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99\)

\(\Rightarrow\)S<99 (1)

Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)S>99-1=98 (2)

Từ (1) và (2)

\(\Rightarrow\)98<S<99

\(\Rightarrow\)S\(\notin\)N

Vậy S\(\notin\)N.

Khách vãng lai đã xóa
HungGG Kim
Xem chi tiết
tran nhu phat
3 tháng 5 2018 lúc 21:35

em hỏi thầy cô đây là toán chuyên