Bài 7: Phép cộng phân số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Học dốt :)

Cho \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{9999}{10000}\). Chứng minh rằng : S\(\notin\)N.

Học dốt :)
27 tháng 1 2020 lúc 14:30

Ta có : \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{15}+...+\frac{1}{10000}\right)\)

\(=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99\)

\(\Rightarrow\)S<99 (1)

Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)S>99-1=98 (2)

Từ (1) và (2)

\(\Rightarrow\)98<S<99

\(\Rightarrow\)S\(\notin\)N

Vậy S\(\notin\)N.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Bùi Yến Nhi
Xem chi tiết
Đinh Ngcoj Bảo Linh
Xem chi tiết
Quynh Nhu Le
Xem chi tiết
phạm kim khánh
Xem chi tiết
Quynh Nhu Le
Xem chi tiết
đậu mỹ ngọc
Xem chi tiết
Mun Gacha
Xem chi tiết
đặng khánh huyền
Xem chi tiết
Nguyễn Thị Tố Uyên
Xem chi tiết