Cho ΔABC vuông tại A, có góc B=60o và AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc vs BC tại E.
a) CM: ΔABC = ΔEBD
b) CM: ΔABE là Δ đều
c) Tính BC
Cho tam giác ABC vuông tại A, có góc B = 60 độ, và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1/ Chứng minh: ΔABD = ΔEBD.
2/ Chứng minh: ΔABE là tam giác đều.
3/ Tính độ dài cạnh BC.
1) Chứng minh: ΔABD = ΔEBD
Xét ΔABD và ΔEBD, có:
BD là cạnh huyền chung (gt)
Vậy ΔABD = ΔEBD (cạnh huyền – góc nhọn)
2) Chứng minh: ΔABE là tam giác đều.
ΔABD = ΔEBD (cmt)
AB = BE
mà góc B = 60 độ (gt)
Vậy ΔABE có AB = BE và góc 60 độ nên ΔABE đều.
3) Tính độ dài cạnh BC
Ta có (gt)
Góc C+B = 90 độ(ΔABC vuông tại A)
Mà BEA = góc B = 60 độ (ΔABE đều)
Nên góc EAC = góc C ΔAEC cân tại E
EA = EC mà EA = AB = EB = 5cm
Do đó EC = 5cm
Vậy BC = EB + EC = 5cm + 5cm = 10cm
Cho tam giác ABC vuông tại A, có =600 và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1/ Chứng minh ΔABD=ΔEBD.
2/ Chứng minh ΔABE là tam giác đều.
3/ Tính độ dài cạnh BC.
Giíup Linh với, Linh đang cần gấp
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
BẠN NÀO LÀM GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Cho tam giác ABC vuông tại A, có =600 và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1/ Chứng minh ΔABD=ΔEBD.
2/ Chứng minh ΔABE là tam giác đều.
3/ Tính độ dài cạnh BC.
bài ca dao đã mượn hình ảnh “bầu và bí”. Đây là hai loại cây khác nhau nhưng có nhưng đặc điểm, môi trường sống giống nhau. Chúng cùng thuộc giống cây thân leo, thường được trồng chung một giàn. Hình ảnh cây bầu, cây bí chung một giànn ta rằng dù chúng có là loài khác nhau đi chăng nữa nhưng vẫn biết chia sẻ không gian, cùng nhau chung sống hòa thuận.
a) Xét ΔABD,ΔEBD có :
BADˆ=BEDˆ(=90độ)
BD:Chung
ABDˆ=EBDˆ(BD là tia phân giác của BˆB^)
=> ΔABD=ΔEBD(cạnh huyền - góc nhọn) (*)
b) Từ (*) suy ra : AB=BE (2 cạnh tương ứng)
=> ΔABE cân tại B
Lại có : ABEˆ=60o (giả thiết)
Do đó : ΔABE là tam giác đều.
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Cho ΔABC vuông tại A , có góc B bằng 57° . Tia phân giác BD của góc ABC cắt AC tại D , trên BC lấy điểm E sao cho BA=BE ( Như hình vẽ bên)
a) Tính số đo góc C
b) Chứng minh ΔABD = ΔEBD và DE
vuông góc với BC
c) Trên tia đối của tia AB lấy điểm I sao cho AI=EC . Chứng minh ba điểm I , D , E thẳng hàng .
Help nhanh nha
Ko biết đừng chat vô nha =/
Câu 8: Cho tam giác ABC vuông tại A, có góc B = 60o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh: Δ ABD = Δ EBD.
b/ Chứng minh: ABE là tam giác đều.
c/ Tính độ dài cạnh BC.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔABE có BA=BE và \(\widehat{ABE}=60^0\)
nên ΔABE đều
c: Xét ΔABC vuông tại A có \(cosABC=\dfrac{AB}{BC}\)
=>\(\dfrac{5}{BC}=cos60=\dfrac{1}{2}\)
=>\(BC=5\cdot2=10\left(cm\right)\)
Cho tam giác ABC vuông tại A, có góc B = 60 độ, và AB = 5cm. Tia phân giác của góc B cắt AC tại
D.Kẻ DE vuông góc với BC tại E.
1/ Chứng minh: ΔABD = ΔEBD.
2/ Chứng minh: ΔABE là tam giác đều.
3/ Tính độ dài cạnh BC.
Cho tam giác ABC vuông tại A, có góc B = 60o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh: Δ ABD = Δ EBD.
b/ Chứng minh: ABE là tam giác đều.
c/ Tính độ dài cạnh BC.
Cho ∆ABC cân tại A. Trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE.
a. Chứng minh: ∆ADE cân.
b. Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.
c. Từ B và C kẻ BH và CK theo thứ tự vuông góc với AD và AE. Chứng minh: BH = CK.
Có ai biết ko chỉ mình với ạ
Bài 1:
a, Xét tg ABD và tg EBD, có:
góc A= góc E(90o)
BD chung
góc ABD= góc DBE(tia phân giác)
=>tg ABD= tg EBD.
b, Ta có: tg ABD= tg DBE(cm câu a)
=>AB=BE(2 cạnh tương ứng)
=>tg ABE cân tại B.
Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.
c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)
=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o
Vì tg ABE là tg đều, nên góc A=60o.
Ta có: góc A=góc BAE+ góc AEC.
=>90o=60o+ góc AEC=30o.
=> góc AEC= góc C(=30o)
=>tg AEC cân tại E.
=>AE=EC.
Mà AE=5cm(tg đều), nên EC=5cm.
Vậy, độ dài cạnh BC là:
BE+EC=5+5=10.
=>BC= 10cm.
Bài 2:
a,Ta có: tg ABC cân tại A.
=>AB=AC và góc ABC= góc ACB.
Xét tg ABD và tg ACE, có:
AB=AC(cmt)
góc B= góc C(cmt)
BD=CE(gt)
=>tg ABD= tg ACE(c. g. c)
=>AD=AE(2 cạnh tương ứng)
=>tg ADE cân tại A.
b, Xét tg ABM và tg ACM, có:
BM=ME(M là trung điểm)
góc BAM= góc MAC(tia phân giác)
AB=AC(cmt câu a)
=>tg ABM= tg AMC(g. c. g)
=>góc BAM= góc BAC(2 góc tương ứng)
=>AM là tia phân giác của góc BCA.
Mà tg ABC và tg ADE đều là tg cân tại A.
=>AM là tia phân giác của góc EAD.
Cho ΔABC vuông tại A , có góc B bằng 57° . Tia phân giác BD của góc ABC cắt AC tại D , trên BC lấy điểm E sao cho BA=BE ( Như hình vẽ bên)
a) Tính số đo góc C
b) Chứng minh ΔABD = ΔEBD và DE\(\) vuông góc với BC
c) Trên tia đối của tia AB lấy điểm I sao cho AI=EC . Chứng minh ba điểm I , D , E thẳng hàng .
Cho ΔABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D, E là điểm trên cạnh BC ▶BE=BA. a/Chứng minh ΔABD=ΔEBD. b/Chứng minh DE vuông góc BC. c/Gọi F là giao điểm của DE và AB. Chứng minh DC=DF. d/Chứng minh AE//FC
Cho tam giác ABC vuông tại A, có B ^ = 60 o , AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E
Tính độ dài cạnh BC
A. 10cm
B. 5cm
C. 6cm
D. 8cm