a)pt thành đa tử : x^4+2019x^2 +2018x+2019
b)tìm giá trị nhỏ nhất của E=2x^2-8x+1
b1 tìm giá trị nhỏ nhất của
E = 2x4 +3x2+7
b2 phân tích đa thức thành nhân tử
a) (x2 +x + 4 )2 +8x(x2 +x +4) +15x2
Ta có : E = 2x4 + 3x2 + 7
Mà : 2x4 \(\ge0\forall x\in R\)
3x2 \(\ge0\forall x\in R\)
Nên : E = 2x4 + 3x2 + 7 \(\ge7\forall x\in R\)
Vây GTNN của E = 7
Dấu "=" sảy ra khi : \(\hept{\begin{cases}2x^4=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^4=0\\x^2=0\end{cases}\Leftrightarrow}x=0}\)
Phân tích đa thức thành nhân tử
\(x^4+2019x^2+2018x+2019\)
1.phân tích đa thức thành nhân tử
x^3-5x^2+8x-4
2.Cho các số a,b,c thỏa mãn a+b+c=3/2. Tìm giá trị nhỏ nhất của biểu thức P= a^2+b^2+c^2
1.phân tích đa thức thành nhân tử
x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2( x - 1 ) - 4x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - 4x + 4 ) = ( x - 1 )( x - 2 )2
2.Cho các số a,b,c thỏa mãn a+b+c=3/2. Tìm giá trị nhỏ nhất của biểu thức P= a2 + b2 + c2
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{\left(\frac{3}{2}\right)^2}{3}=\frac{3}{4}\)
Đẳng thức xảy ra <=> a=b=c1/2. Vậy MinP = 3/4
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm giá trị nhỏ nhất của biểu thức A=2019x^2-2x+1
\(A=2019x^2-2x+1\)
\(A=2019\left(x^2-\frac{2}{2019}x+\frac{1}{2019}\right)\)
\(A=2019\left(x^2-2\cdot x\cdot\frac{1}{2019}+\frac{1}{2019^2}+\frac{2018}{2019^2}\right)\)
\(A=2019\left[\left(x-\frac{1}{2019}\right)^2+\frac{2018}{2019^2}\right]\)
\(A=2019\left(x-\frac{1}{2019}\right)^2+\frac{2018}{2019}\ge\frac{2018}{2019}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2019}\)
a). Tìm a để đa thức \(2x^3-x^2+4x+a\) chia hết cho đa thức \(x+2\)
b). Tìm số nguyên n để \(2n^2-n+2\) chia hết cho \(2n+1\)
c). Tìm giá trị nhỏ nhất của đa thức M = \(2x^2-8x-10\)
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
Tìm giá trị nhỏ nhất của đa thức x2+2x+2, 4x2- 12x+ 11, x2+ x+1 .
Tìm giá trị lớn nhất của đa thức -x2 +4x-1, -x2+ 4x-4, -x2 +6x-15, -x2+8x+5
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
câu 1 :Phân tích đa thức thành nhân tử
a) x^2-16x-y^2+9
b)4x^4+1
câu 2: Tìm giá trị lớn nhất, nhỏ nhất (a,b là nhỏ , c,d là lớn)
a) x^2-2x+3
b)