Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Huyền
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
19 tháng 9 2020 lúc 14:45

Mình tách thành hai phần nhìn cho dễ hiểu nhé !

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

+) \(\frac{x-3\sqrt{x}}{x-9}-1=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}-1=\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}\)

+) \(\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{9-x+x-9-x+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

=> \(\frac{-3}{\sqrt{x}+3}\div\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{-3}{\sqrt{x}+3}\times\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{4-x}\)

\(=\frac{3\left(\sqrt{x}-2\right)}{x-4}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3}{\sqrt{x}+2}\)

Khách vãng lai đã xóa
Đinh Anh Thư
Xem chi tiết
꧁WღX༺
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Lê Tài Bảo Châu
9 tháng 7 2019 lúc 15:49

\(K=|x-1|+|x-2|+|x-3|\)

\(=\left(|x-1|+|x-3|\right)+|x-2|\)

\(=\left(|x-1|+|3-x|\right)+|x-2|\)

Đặt \(A=|x-1|+|3-x|\ge|x-1+3-x|\)

Hay \(A\ge2\left(1\right)\)

Dấu "= " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>3\end{cases}\left(loai\right)}\)

\(\Leftrightarrow1\le x\le3\)

Đặt \(B=|x-2|\)

Ta có: \(|x-2|\ge0;\forall x\)

Hay \(B\ge0;\forall x\left(2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)

                       \(\Leftrightarrow x=2\)

Từ \(\left(1\right);\left(2\right)\Rightarrow A+B\ge2+0\)

                   Hay \(K\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow}x=2\)

Vậy MIN K=2 \(\Leftrightarrow x=2\)

Lê Tài Bảo Châu
9 tháng 7 2019 lúc 15:53

Kiệt ơi phần M là x+28 hay là x-28 đấy 

Kiệt Nguyễn
9 tháng 7 2019 lúc 15:54

Lê Tài Bảo Châu x + 28

Hải Anh
Xem chi tiết
trịnh thủy tiên
Xem chi tiết
Edowa Conan
20 tháng 8 2016 lúc 21:21

a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)

           Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0

        Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

      Dấu = xảy ra khi \(x+\frac{3}{2}=0\)

                                 \(x=-\frac{3}{2}\)

Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)

b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)

        Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)

               Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

     Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)

                                 \(y+\frac{1}{2}=0;y=-\frac{1}{2}\)

Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)

 

Hoàng Lê Bảo Ngọc
20 tháng 8 2016 lúc 21:22

a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2

b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\) 

\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)

\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2

Lightning Farron
20 tháng 8 2016 lúc 21:23

a)Đặt \(A=\frac{1}{4}-\left|x+\frac{3}{2}\right|\)

Ta thấy: \(\left|x+\frac{3}{2}\right|\ge0\)

\(\Rightarrow-\left|x+\frac{3}{2}\right|\le0\)

\(\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}-0=\frac{1}{4}\)

\(\Rightarrow A\le\frac{1}{4}\)

Dấu = khi \(x=-\frac{3}{2}\)

Vậy MaxA=\(\frac{1}{4}\Leftrightarrow x=-\frac{3}{2}\)

b)Đặt \(B=\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)

Ta thấy: \(\begin{cases}\left|x-\frac{4}{3}\right|\\\left|y+\frac{1}{2}\right|\end{cases}\ge0\)

\(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\\-\left|y+\frac{1}{2}\right|\end{cases}\)\(\le0\)

\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)

\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}-0=\frac{5}{3}\)

\(\Rightarrow B\le\frac{5}{3}\)

Dấu = khi \(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)

Vậy MaxB=\(\frac{5}{3}\Leftrightarrow\)\(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)

 

 

Nguyễn Hồng Hạnh
Xem chi tiết
Trần Thùy Dương
7 tháng 10 2018 lúc 22:20

\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)

\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+x+1}\)

\(=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\)

Vì \(x^2+1\ge1\)

\(\Rightarrow B=\frac{3}{x^2+1}\le3\)

Dấu "=" xảy ra <=> x=0

Vậy GTLN của B =3 <=> x=0 

ivyuyen
7 tháng 10 2018 lúc 22:23

điều kiện : \(x\ne-1\)\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\Leftrightarrow\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow\frac{3}{x^2+1}\)=> B lớn nhất khi \(x^2+1\)bé nhất = > x = 0 khi B = 3
mình làm hơi vắn tắt bạn thông cảm

꧁WღX༺
Xem chi tiết
ßσss™|๖ۣۜHắc-chan|
Xem chi tiết
Lê Tuấn Nghĩa
8 tháng 5 2019 lúc 21:13

1. A=\(\frac{x^2-1}{x^2+1}\)

=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)

để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN 

mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0. 

khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0

zZz Cool Kid_new zZz
8 tháng 5 2019 lúc 21:20

Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)

\(=\left|x+2017\right|+\left|2-x\right|\)

\(\ge\left|x+2017+2-x\right|\)

\(=2019\)

Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)

\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)

Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)

tth_new
9 tháng 5 2019 lúc 9:59

Bài 3: (chắc thế này quá)

\(A\left(x\right)=x^1+x^3+x^5+...+x^{2019}\)

Dãy số trên có số số hạng là: (2019-1) : 2 + 1 = 1010 số hạng.

Thay x = -1 vào A(x) được: \(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+..+\left(-1\right)\) (1010 số -1)

\(=1010.\left(-1\right)=-1010\)

Vậy giá trị đa thức A(x) tại x = -1 là  -1010