Cho A = \(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+......+\frac{3^n-1}{3^n}\) CMR A > n-\(\frac{1}{2}\)
1 CMR:
B=\(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+.....+\frac{3n+1}{3^n}< \frac{11}{4}\)(n thuộc N*;n>3)
A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
C=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^{20}-1}{3^{20}}>19\frac{1}{2}\)
Có : \(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow2A< 1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
Có: \(6A< 3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(6A-2A< 3-\frac{1}{3^{99}}< 3\)
\(\Rightarrow4A< 3\Rightarrow A< \frac{3}{4}\)(đpcm)
Cho \(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{+3^n}\)
\(CMR:A>n-\frac{1}{2}\)
Cho \(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}.\)
Chứng minh : \(A>n-\frac{1}{2}\)
\(choA=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)
Chứng minh rằng \(A< n-\frac{1}{2}\)
A =\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+.....+\frac{3^n-1}{3^n}\). Chứng minh rằng A > n - \(\frac{1}{2}\)
CHO \(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3n-1}{3n}\).\(CM:A>n-\frac{1}{2}\)
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{n}{{{3^n} - 1}}\). Ba số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\) lần lượt là:
A. \(\frac{1}{2};\frac{1}{4};\frac{3}{{27}}\).
B. \(\frac{1}{2};\frac{1}{4};\frac{3}{{26}}\).
C. \(\frac{1}{2};\frac{1}{4};\frac{3}{{25}}\).
D. \(\frac{1}{2};\frac{1}{4};\frac{3}{{28}}\).
Ta có:
\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)
\(\Rightarrow B\)
1. Cho a,b,c là các số dương cmr:
\(\frac{2\sqrt{a}}{a^3
+b^2}+\frac{2\sqrt{b}}{b^3+c^2}
+\frac{2\sqrt{c}}{c^3+a^2}\le\frac{1}{a^2}
+\frac{1}{b^2}+\frac{1}{c^2}\)
2. CMR với mọi stn n thì \(n^2+n+1\)không chia hết cho 9
1. Tìm x: \(\frac{7}{9}:\left(2+\frac{3}{4}x\right)+\frac{5}{9}=\frac{23}{27}\)
2. CMR p/s sau tối giản với mọi số tự nhiên n:\(\frac{2.n+3}{4.n+8}\)