Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ga*#lax&y
Xem chi tiết
Đinh Minh Đức
4 tháng 12 2021 lúc 6:47

m và n thuộc N*

Ga*#lax&y
Xem chi tiết
Lysr
4 tháng 12 2021 lúc 14:06

Tham khảo:D

 

 Cách 1: 
2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

Cách 2: 
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2. 
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b. 
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2. 

Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.

Ga*#lax&y
Xem chi tiết
Trường Nguyễn Công
4 tháng 12 2021 lúc 14:19

x,y ở đâu :))?

Trường Nguyễn Công
4 tháng 12 2021 lúc 14:20

2m-2n=256
2m-2n=28
m-n=8

Đại Tiểu Thư
4 tháng 12 2021 lúc 14:22

\(2^m-2^n=2^8\)
\(\Rightarrow2^n.\left(2^m-n-1\right)=2^8\)
\(\Rightarrow2^m-n-1=2^8-n\)
dễ thấy......với 8-n khác 0 => vế trái lẻ (do m lớn hơn n) mà vế phải chẵn => vô nghiệm
\(\Rightarrow8-n=0\Rightarrow n=8\Rightarrow m-n=1\Rightarrow m=9\)

Vậy \(n=8;m=9\)

Lê Linh Ngân
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Thanh Tùng DZ
15 tháng 3 2020 lúc 21:09

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

Khách vãng lai đã xóa
Tiến Nguyễn Minh
24 tháng 3 2020 lúc 20:26

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

Khách vãng lai đã xóa
Tiến Nguyễn Minh
26 tháng 3 2020 lúc 20:40

Đặt \(p^{2m}+q^{2n}=a^2\)\(\left(a\in Z\right)\)(1)

Nếu p,q lẻ suy ra \(p^{2m}\equiv q^{2n}\equiv1\)(mod 4)

\(\Rightarrow a^2\equiv2\)(mod 4), vô lý.

Suy ra trong p,q có 1 số = 2

Không mất tính tổng quát, giả sử p=2

\(\left(1\right)\Leftrightarrow2^{2m}+q^{2n}=a^2\)(2)

Nếu q khác 3 \(\Rightarrow\)q không chia hết cho 3\(\Rightarrow\)\(q^2\equiv1\)(mod 3)\(\Rightarrow\)\(q^{2n}\equiv1\)(mod 3)

Mà \(2^{2m}=4^m\equiv1^m\equiv1\)(mod 3)

Suy ra \(2^{2m}+q^{2n}\equiv2\)(mod 3)\(\Rightarrow\)vô lý.

Do đó q=3.

(2) trở thành \(2^{2m}+3^{2n}=a^2\)\(\Leftrightarrow\)\(3^{2n}=\left(a-2^m\right)\left(a+2^m\right)\)

\(\Rightarrow\)\(a-2^m\)và \(a+2^m\)là lũy thừa của 3.

Mà 2 số trên không cùng chia hết cho 3 (vì hiệu của chúng không chia hết cho 3)

\(\Rightarrow\)Có 1 số không chia hết cho 3\(\Rightarrow\)Có 1 số bằng 1 mà \(a-2^m< a+2^m\)\(\Rightarrow\hept{\begin{cases}a-2^m=1\\a+2^m=3^{2n}\end{cases}}\Rightarrow2\cdot2^m=3^{2n}-1\Rightarrow2^{m+1}=\left(3^n-1\right)\left(3^n+1\right)\)

\(\Rightarrow\)\(3^n-1\)và \(3^n+1\)đều là lũy thừa của 2.

Mà 2 số này không cùng chia hết cho 4 (do hiệu của chúng = 2 không chia hết cho 4).

\(\Rightarrow\)Có 1 số không chia hết cho 4.

Mà 2 số cùng tính chẵn lẻ\(\Rightarrow\)2 số cùng chẵn\(\Rightarrow\)Có 1 số = 2.

\(\Rightarrow\hept{\begin{cases}3^n-1=2\\3^n+1=2m\end{cases}}\)(do \(3^n-1< 3^n+1\))\(\Rightarrow\hept{\begin{cases}n=1\\m=2\end{cases}\Rightarrow\hept{\begin{cases}p=2\\q=3\end{cases}.}}\)

P/S: Bài dài viết lại mỏi quá.

Khách vãng lai đã xóa
C�L�I
Xem chi tiết
Nguyễn Khánh Ngân
19 tháng 2 2019 lúc 22:48

TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n

Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn

                                           suy ra 3m là lẻ

                                           suy ra m là lẻ  và n có thể là bất kì số nào(n,m thuộc N)

TH2     

3n-1/2m là dương suy ra 3n-1 chia hết cho 2m

Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn

                                           suy ra 3n là lẻ

                                           suy ra n là lẻ  và m có thể là bất kì số nào(n,m thuộc N)

vậy n,m là lẻ

C�L�I
19 tháng 2 2019 lúc 23:14

THỬ lại đi sai rùi

Kiên-Messi-8A-Boy2k6
Xem chi tiết
Nhân Thiện Hoàng
10 tháng 2 2018 lúc 14:55

khổ qua hya là xem trên mạng ý

kieuluongbk
Xem chi tiết
Bùi Huy Hiển
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2018 lúc 13:25