GPt \(\sqrt{x+2}-\sqrt{x+3}=\sqrt{x+4}-\sqrt{x+7}\)
gpt \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)
\(\sqrt{x+2\sqrt{x-2}}-\sqrt{x-2\sqrt{x-2}}=-2\)
\(=\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)ĐK:\(x\ge-7\)
Đặt \(t=\sqrt{x+7}\left(t\ge0\right)\)
\(\Rightarrow t+1-4=\sqrt{t^2-t-6}\)
\(\Leftrightarrow t^2-6t+9=t^2-t-6\left(t\ge3\right)\)
\(\Leftrightarrow5t=15\)
\(\Leftrightarrow t=3\left(TM\right)\)\(\Rightarrow x=2\left(tm\right)\)
S={2}
b)ĐK:\(x\ge2\)
pt\(\Leftrightarrow\sqrt{x-2+2\sqrt{x-2}+2}-\sqrt{x-2-2\sqrt{x-2}+2}=-2\)
Đặt t= can(x-2)(t>=0)
Đến đây bạn giải tiếp nhé!
#Walker
\(Gpt:\sqrt{x^4-7}+\sqrt{x^3-7}=x^2\)
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(\sqrt{x^4-7}-\left(x^2-1\right)+\sqrt{x^3-7}-1=0\)
\(\Leftrightarrow\dfrac{x^4-7-\left(x^2-1\right)^2}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^3-8}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-4\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{2\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^2+2x+4}{\sqrt{x^3-7}+1}\right)=0\)
Do \(x\ge\sqrt[3]{7}>1\Rightarrow x^2>1\Rightarrow x^2-1>0\)
\(\Rightarrow\dfrac{2\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^2+2x+4}{\sqrt{x^3-7}+1}>0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
gpt : a) \(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
b) \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
c) \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)
b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:
* Với \(x>-2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)
* Với \(x< -2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)
Do đó pt có nghiệm duy nhất \(x=-2\)
c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)
\(\Rightarrow a^4+b^4=2\)
Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)
Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
tth, Hoàng Tử Hà, Bonking, Akai Haruma, @Nguyễn Việt Lâm
Quoc Tran Anh Le
giúp mk vs!
mk cảm ơn nhiều!
gpt:
\(\sqrt{x}+\sqrt[4]{x\left(1-x\right)}+\sqrt[4]{\left(1-x\right)^3}=\sqrt{1-x}+\sqrt[4]{x^3}+\sqrt[4]{x^2\left(1-x\right)}\)
GPT \(\sqrt{3-x}\sqrt{4-x}+\sqrt{4-x}\sqrt{5-x}+\sqrt{3-x}\sqrt{ 5-x}=x\)
Gpt: \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) (2 cách)
Cách 1:
GPT :\(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) - Hoc24
Cách 2:
Đặt \(\left\{{}\begin{matrix}\sqrt{25x-25}=a\\\sqrt{x+7}=b\end{matrix}\right.\) \(\Rightarrow3x-4=\dfrac{a^2-b^2}{8}\)
Pt trở thành:
\(a-b=\dfrac{a^2-b^2}{8}\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-8\right)=0\)
\(\Leftrightarrow...\)
1.Gpt: \(\dfrac{6}{x-3\sqrt{x-2}+7}=\dfrac{1}{\sqrt{x-2}}+\dfrac{\sqrt{3}}{3\sqrt{2\sqrt{x-2}}-3}\)
2.Ghpt: \(\left\{{}\begin{matrix}x^2-y-z=0\\x^3-y^2-z^2+2=0\end{matrix}\right.\)
GPT:
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
cai nay la hag dag thuc phan tih ra la dk
pt<=>căn((x-1/2)^2+75/4)+căn(2(x-1/2)^2+3(x+2)^2)+căn((x-1/2)^2+3(2x+3/2)^2)>=3*căn3(x+2)
dấu = xãy ra khi x=1/2
Gpt : a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b) \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)
c) \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html