Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kiều minh quân
Xem chi tiết
Thanh Hoàng Thanh
24 tháng 2 2022 lúc 22:18

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)

Trần Thị Mai Thanh
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
2 tháng 2 2021 lúc 22:06

Điều kiện: \(x\ge-1\)

PT \(\Rightarrow-2x-2\le x^2-2x-3\le2x+2\)

+) Xét \(x^2-2x-3\ge-2x-2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

+) Xét \(x^2-2x-3\le2x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

 \(\Rightarrow x\in(-\infty;-1]\cup[-5;+\infty)\)

Mai Quang Bình
Xem chi tiết
Kiêm Hùng
8 tháng 7 2021 lúc 18:18

\(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3>0\forall x\in R\)

Vậy BPT có tập nghiệm là \(R\)

Nhi Đồng
Xem chi tiết
mikusanpai(՞•ﻌ•՞)
23 tháng 2 2021 lúc 11:31

tham khảo 

https://hoidapvietjack.com/q/57243/giai-cac-phuong-trinh-sau-a-2x12-2x-12-b-x2-3x-2-5x2-3x60

Trần Mạnh
23 tháng 2 2021 lúc 11:36

b) (2x+1)2-2x-1=2

\(< =>4x^2+4x+1-2x-1=2\)

\(< =>4x^2+2x-2=0\)

\(< =>4x^2+4x-2x-2=0\)

\(< =>\left(4x^2+4x\right)-\left(2x+2\right)=0\)

\(< =>4x\left(x+1\right)-2\left(x+1\right)=0\)

\(< =>\left(x+1\right)\left(4x-2\right)=0\)

\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\4x-2=0=>x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy....

Lưu Quang Trường
23 tháng 2 2021 lúc 11:45

b) (2x+1)2-2x-1=2

<=>4x2+4x+1−2x−1=2

<=>4x2+2x−2=0

<=>4x2+4x−2x−2=0

<=>(4x2+4x)−(2x+2)=0

<=>4x(x+1)−2(x+1)=0

<=>(x+1)(4x−2)=0

lê hoài nam
Xem chi tiết
Akai Haruma
15 tháng 5 2021 lúc 22:00

Lời giải:

PT $\Leftrightarrow (x^2-1)^3+(x^2+2)^3+(2x-1)^3-3(x^2-1)(x^2+2)(2x-1)=0$

Đặt $x^2-1=a; x^2+2=b; 2x-1=c$ thì pt trở thành:
$a^3+b^3+c^3-3abc=0$

$\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$

Nếu $a+b+c=0$

$\Leftrightarrow x^2-1+x^2+2+2x-1=0$

$\Leftrightarrow 2x^2+2x=0$

$\Rightarrow x=0$ hoặc $x=-1$
Nếu $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

$\Rightarrow a-b=b-c=c-a=0$ (dễ CM)

$\Leftrightarrow a=b=c$

$\Leftrightarrow x^2-1=x^2+2=2x-1$ (vô lý)

Vậy..........

Phạm Thùy Trang
Xem chi tiết
~Nguyễn Tú~
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2021 lúc 19:44

1) Ta có: \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nii-chan
Xem chi tiết