Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Bình Nguyên
Xem chi tiết
san nguyễn
Xem chi tiết
Akai Haruma
31 tháng 5 2019 lúc 15:42

Lời giải:

\(a+b+c=4;a,b,c>0\Rightarrow 0< a,b,c< 4\)

Ta có:

\(0< a< 4\Rightarrow \sqrt[4]{a}< \sqrt{2}\)

\(\Rightarrow a< \sqrt{2}.\sqrt[4]{a^3}\)

Hoàn toàn tương tự: \(b< \sqrt{2}.\sqrt[4]{b^3}; c< \sqrt{2}.\sqrt[4]{c^3}\)

Cộng theo vế các BĐT vừa thu được ở trên:

\(\Rightarrow a+b+c< \sqrt{2}(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3})\)

\(\Leftrightarrow 4< \sqrt{2}(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3})\)

\(\Leftrightarrow \sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}> 2\sqrt{2}\) (đpcm)

Nguyễn Võ Anh Nguyên
Xem chi tiết
Ngo Anh
Xem chi tiết
Quang Vinh Lưu
Xem chi tiết
Nguyễn Thị Ngọc Thơ
29 tháng 5 2019 lúc 21:49

\(P=\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\)

\(\Rightarrow2\sqrt{3}P=\Sigma2\sqrt{3}\sqrt{4-a^2}\)\(=\Sigma2\sqrt{\left(a+b+c\right)\left(4-a^2\right)}\)

Vì \(a,b,c\in\left[-2,2\right]\Rightarrow\) \(\left\{{}\begin{matrix}4-a^2\ge0\\4-b^2\ge0\\4-c^2\ge0\end{matrix}\right.\)

Áp dụng BĐT AM-GM cho các số không âm, ta có:

\(\left(a+b+c\right)+\left(4-a^2\right)\ge2\sqrt{\left(a+b+c\right)\left(4-a^2\right)}\)

\(\Rightarrow2\sqrt{3}P\le\Sigma\left(a+b+c\right)+\left(4-a^2\right)\)

\(\Leftrightarrow2\sqrt{3}P\le3\left(a+b+c\right)+12-\left(a^2+b^2+c^2\right)\)

\(\Rightarrow2\sqrt{3}P\le21-\frac{\left(a+b+c\right)^2}{3}=21-\frac{9}{3}=18\)

\(\Rightarrow P\le3\sqrt{3}\)

\(''=''\Leftrightarrow a=b=c=1\)

Dương Bình Nguyên
Xem chi tiết
Dương Bình Nguyên
Xem chi tiết
Thắng Nguyễn
24 tháng 5 2018 lúc 9:24

thử a=b=c=1/3 -->đề sai

Lê Nguyên THái
24 tháng 5 2018 lúc 17:20

Bài này sai rồi nha bn!!

Áp dụng bdt Bunhiacopski

\(\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}<=\sqrt{3*(12-(a^2+b^2+c^2))} a^2+b^2+c^2>=(a+b+c)^2/3 = 1/3 <\sqrt{35} \)

Vậy là phải bé hơn hoặc bằng căn 35 mới đúng đề!

Đặng Hữu Hiếu
26 tháng 5 2018 lúc 16:10

Bạn viết đề ngược dấu rồi, phải là ≥3√3

Trình
Xem chi tiết
alibaba nguyễn
4 tháng 10 2017 lúc 7:56

\(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{4+\left(b+c\right)^2}+\sqrt{4+\left(a+c\right)^2}\)

\(\ge\sqrt{4+\left(a+b\right)^2}+\sqrt{16+\left(a+b+2c\right)^2}\)

\(\ge\sqrt{36+\left(2a+2b+2c\right)^2}=\sqrt{36+36}=6\sqrt{2}\)

Đen đủi mất cái nik
Xem chi tiết
Kiệt Nguyễn
22 tháng 8 2020 lúc 9:47

Bất đẳng thức cần chứng minh tương đương \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le2.\sqrt{2}.\sqrt[3]{9}\)

Ta quy bài toán về chứng minh hai bất đẳng thức sau 

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le3\sqrt{2}\)và \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)

Áp dụng bất đẳng thức Bunyakovsky ta được \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{6\left(a^2+b^2+c^2\right)}\)\(\le\sqrt{6\sqrt{3\left(a^4+b^4+c^4\right)}}\le3\sqrt{2}\)

Mặt khác ta lại có \(\left[\left(x^3+y^3+z^3\right)\left(x+y+z\right)\right]^2\ge\left(x^2+y^2+z^2\right)^4\)\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Do đó ta được \(\left(x^3+y^3+z^3\right)^2\ge\frac{\left(x^2+y^2+z^2\right)^3}{3}\)

Áp dụng kết quả trên ta thu được \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right]^3\)

Mà theo bất đẳng thức Cauchy-Schwarz ta có\(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{1}{2\left(a^2+b^2\right)}+\frac{1}{2\left(b^2+c^2\right)}+\frac{1}{2\left(c^2+a^2\right)}\) \(\ge\frac{9}{4\left(a^2+b^2+c^2\right)}\ge\frac{9}{4\sqrt{3\left(a^4+b^4+c^4\right)}}\ge\frac{9}{4\sqrt{9}}=\frac{3}{4}\)

Do đó ta có \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{3}{4}\right]^3=\frac{9}{64}\)

Suy ra \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)

Từ các kết quả trên ta được \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le\frac{3\sqrt{2}}{\frac{\sqrt[3]{3}}{2}}=2.\sqrt{2}.\sqrt[3]{9}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa