\(\frac{150}{x-1}-\frac{140}{x}=5\)
\(\frac{150}{x-1}-\frac{140}{x}=5\)
\(\frac{150}{x-1}-\frac{140}{x}=5\left(ĐKXĐ:x\ne1,x\ne0\right)\\ \Leftrightarrow\frac{150x-140\left(x-1\right)}{x\left(x-1\right)}=\frac{5x\left(x-1\right)}{x\left(x-1\right)}\\ \Leftrightarrow150x-140x+140=5x^2-5x\\5x^2-5x-10x-140=0\\ \Leftrightarrow5x^2-15x-140=0\\ \Leftrightarrow5\left(x^2-3x-28\right)=0\\ \Leftrightarrow5\left[\left(x^2-3x+\frac{9}{4}\right)-28-\frac{9}{4}\right]=0\\ \Leftrightarrow5\left[\left(x-\frac{1}{2}\right)^2-\frac{121}{4}\right]=0\\ \Leftrightarrow5\left(x-\frac{1}{2}-\frac{11}{2}\right)\left(x-\frac{1}{2}+\frac{11}{2}\right)=0\\ \Leftrightarrow5\left(x-6\right)\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-6=0\\x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\\ Vậy...\)
\(Giảiptsau\\ \frac{150}{x-1}-\frac{140}{x}=5\)
\(\frac{150}{x-1}-\frac{140}{x}=5\)
\(\Leftrightarrow\frac{150}{x-1}.x\left(x-1\right)-\frac{140}{x}.x\left(x-1\right)=5.x\left(x-1\right)\)
\(\Leftrightarrow150x-140\left(x-1\right)=5x\left(x-1\right)\)
\(\Leftrightarrow10x+140=5x^2-5x\)
\(\Leftrightarrow5x^2-5x=10x+140\)
\(\Leftrightarrow5x^2-5x-140=10x+140-140\)
\(\Leftrightarrow5x^2-5x-140=10x\)
\(\Leftrightarrow5x^2-5x-140=10x-10\)
\(\Leftrightarrow5x^2-5x-140=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\x=-4\end{cases}}\)
Không chắc nha
\(ĐKXĐ:x\ne1\)
\(\frac{150}{x-1}-\frac{140}{x}=5\)
\(\Leftrightarrow\frac{150x}{x\left(x-1\right)}-\frac{140\left(x-1\right)}{x\left(x-1\right)}=5\)
\(\Leftrightarrow\frac{150x}{x\left(x-1\right)}-\frac{140x-140}{x\left(x-1\right)}=5\)
\(\Leftrightarrow\frac{150x-140x+140}{x\left(x-1\right)}=5\)
\(\Leftrightarrow150x-140x+140=5x\left(x-1\right)\)
\(\Leftrightarrow10x+140=5x\left(x-1\right)\)
\(\Leftrightarrow10\left(x+14\right)=5x\left(x-1\right)\)
\(\Leftrightarrow2\left(x+14\right)=x\left(x-1\right)\)
\(\Leftrightarrow2x+28=x^2-x\)
\(\Leftrightarrow3x+28=x^2\)
\(\Leftrightarrow3x-x^2=-28\)
\(\Leftrightarrow x\left(3-x\right)=-28\)
\(\Leftrightarrow x\left(3-x\right)=-4.7\)
\(\Leftrightarrow x=-4\)
giải pt sau
\(\frac{150}{x-1}\frac{140}{x}=5\)
\(\frac{150}{x-1}-\frac{140}{x-1}=5\)
Giải phường trình sau
\(\frac{150}{x-1}-\frac{140}{x-1}=5\left(ĐK:x\ne1\right)\)
\(\Leftrightarrow\frac{10}{x-1}=5\)
\(\Leftrightarrow x-1=2\)
\(\Leftrightarrow x=3\)
ĐKXĐ: x-1\(\ne\)0=> x\(\ne\)1
=> \(\frac{150-140}{x-1}\)=5
=> \(\frac{10}{x-1}\)=5
=> 10= 5(x-1)=> x-1=2=> x=1(ko thỏa mã ĐKXĐ x\(\ne\)1)
phương trình này vô nghiệm.
\(\frac{150}{x-1}-\frac{140}{x-1}\)= 5
\(\frac{150-140}{x-1}=5\)
\(\frac{10}{x-1}=5\)
\(\frac{10}{x-1}=\frac{5x-5}{x-1}\)
10 = 5x - 5
-5x = -10 - 5
-5x = -15
x = -15 : -5
x = 3
\(\frac{3x}{2}-\frac{1}{3}=\frac{2}{5}+x\)
\(x-\frac{11}{15}=\frac{3+x}{5}\)
\(\left(x-4\right).\frac{50}{120}=\frac{40x}{120}+\left(-2\right)^2\)
\(2x-\left(\frac{70x}{140}+\frac{25x}{100}\right)=-5\frac{1}{4}\)
-153 - |x-2|\(^2\) :(-3)\(^3\) =|(-2)^5-8^2|
12x-(3x+6).1/3=|(-5)^3+3.2|
Tìm số x,y,z,t biết : \(\frac{x}{140}=\frac{-18}{y}=\frac{z}{-21}=-\frac{135}{t}=\frac{2679}{6251}\)
\(\frac{x}{140}=\frac{-18}{y}=\frac{z}{-21}=\frac{-135}{t}=\frac{2679}{6251}\)
\(\Rightarrow x=\frac{140.2679}{6251}=60\)
\(y=\frac{-18.6251}{2679}=-42\)
\(z=\frac{-21.2679}{6251}=-9\)
\(t=\frac{-135.6251}{2679}=315\)
Giải hệ phương trình sau
\(x+y=140\)
\(x-\frac{x}{8}=y+\frac{8}{x}\)
Ta có: x + y = 140 => x = 180 - y
Thay x = 180 - y vào x - x/8 = y + 8/x ta đc:
\(180-y-\frac{180-y}{8}=y+\frac{8}{180-y}\)
\(\Rightarrow\left(180-y\right)\left(180-y\right).8-\left(180-y\right)\left(180-y\right)=8y\left(180-y\right)+8.8\)
\(\Rightarrow\left(180-y\right)^2.8-\left(180-y\right)^2=8y\left(180-y\right)+64\)
\(\Rightarrow\left(32400-360y+y^2\right).8-\left(32400-360y+y^2\right)=1440y-8y^2+64\)
\(\Rightarrow259200-2880y+8y^2-32400+360y-y^2-1440y+8y^2-64=0\)
\(\Rightarrow15y^2-3960y+226736=0\)
\(\Rightarrow y=180\) hoặc y = 84
Khi y = 180 => x = 0
Khi y = 84 => x = 96
hình như tớ lm lộn rồi :v , thui kệ đi ..... mệt
A=\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+....+\frac{1}{x\cdot\left(x+3\right)}\)
3A=\(3\cdot\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+.....\left(\frac{1}{x}-\frac{1}{x+3}\right)\)
3A=\(3\cdot\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
3A=\(\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{4620}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{101}{4620}\)
\(\frac{1}{x+3}=?\)
\(A=\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}\Leftrightarrow A=3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)
\)
\(\Leftrightarrow A=3.\left(\frac{1}{5}-\frac{1}{x+3}\right)\)
Không có gtri A=? ak bạn??
Giải các pt sau:
a,\(\frac{x+5}{x^2-5}\)-\(\frac{x+25}{2x^2-50}\)\(=\frac{x-5}{2x^2+10x}\)
b,\(\frac{x+1}{x-1}-\)\(\frac{x-1}{x+1}\)\(=\frac{16}{x^2-1}\)
c,\(\left(1-\frac{x-1}{x+1}\right)\left(x+2\right)\)\(=\frac{x+1}{x-1}+\frac{x-1}{x+1}\)
a)\(pt\Leftrightarrow-\frac{x}{2x^2-5}-\frac{25}{2x^2-50}+\frac{x}{x^2-5}+\frac{5}{x^2-5}=\frac{x}{2x^2+10x}-\frac{5}{2x^2+10x}\)
=>\(-\frac{x}{2x^2+10x}+\frac{5}{2x^2+10x}-\frac{x}{2x^2-50}-\frac{25}{2x^2-50}+\frac{x}{x^2-5}+\frac{5}{x^2-5}=0\)
\(\Leftrightarrow-\frac{5\left(x^2+8x-5\right)}{2\left(x-5\right)x\left(x^2-5\right)}=0\)
\(\Rightarrow\frac{1}{x-5}=0\Leftrightarrow\frac{1}{x}=0\Rightarrow\frac{1}{x^2-5}=0\)
=>x2+8x-5=0
=>82-(-4(1.5))=84
=>x1=(-8)+8:2=\(\sqrt{21}-4\)
=>x2=(-8)+8:2=\(-\sqrt{21}-4\)
=>x=±\(\sqrt{21}-4\)
b)\(\Leftrightarrow-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=\frac{16}{x^2-1}\)
\(\Rightarrow-\frac{16}{x^2-1}-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=0\)
\(\Rightarrow\frac{4\left(x-4\right)}{\left(x-1\right)\left(x+1\right)}=0\Leftrightarrow\frac{1}{x-1}=0\Rightarrow\frac{1}{x+1}=0\)
=>x=4
c)\(\Leftrightarrow-\frac{x^2}{x+1}-\frac{x}{x+1}+\frac{2}{x+1}+x+2=\frac{x}{x+1}-\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}\)
\(\Rightarrow-\frac{x^2}{x+1}-\frac{2x}{x+1}+\frac{3}{x+1}-\frac{x}{x-1}+x-\frac{1}{x-1}+2=0\)
\(\Rightarrow\frac{2\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}=0\Leftrightarrow\frac{1}{x-1}=0\Rightarrow\frac{1}{x+1}=0\)
=>x=3