\(\frac{150}{x-1}-\frac{140}{x}=5\left(ĐKXĐ:x\ne1,x\ne0\right)\\ \Leftrightarrow\frac{150x-140\left(x-1\right)}{x\left(x-1\right)}=\frac{5x\left(x-1\right)}{x\left(x-1\right)}\\ \Leftrightarrow150x-140x+140=5x^2-5x\\5x^2-5x-10x-140=0\\ \Leftrightarrow5x^2-15x-140=0\\ \Leftrightarrow5\left(x^2-3x-28\right)=0\\ \Leftrightarrow5\left[\left(x^2-3x+\frac{9}{4}\right)-28-\frac{9}{4}\right]=0\\ \Leftrightarrow5\left[\left(x-\frac{1}{2}\right)^2-\frac{121}{4}\right]=0\\ \Leftrightarrow5\left(x-\frac{1}{2}-\frac{11}{2}\right)\left(x-\frac{1}{2}+\frac{11}{2}\right)=0\\ \Leftrightarrow5\left(x-6\right)\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-6=0\\x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\\ Vậy...\)