Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
👁💧👄💧👁
Xem chi tiết
👁💧👄💧👁
16 tháng 3 2019 lúc 11:52

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

Mashiro Rima
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Đa Vít
Xem chi tiết
Phạm Hữu Hiếu
26 tháng 9 2019 lúc 9:56

bú lồn mả bà mày trả 

Nguyễn Đa Vít
26 tháng 9 2019 lúc 20:37

bạn Phạm Hữu Tiến, bạn mất dạy vừa thôi nha mình chưa làm j bạn, mình chỉ hỏi bài các bạn thôi, bạn không trả lời đc thì thôi chứ sao bạn lại nói tục như vậy?????????

tuyết lang
Xem chi tiết
Phùng Minh Quân
25 tháng 12 2018 lúc 19:01

* t sẽ chứng minh đề thiếu điều kiện \(n>0\)

ĐKXĐ : \(n>0\) hoặc \(n< -1\)

+) Nếu \(n>0\) ta có : 

\(\frac{1}{\sqrt{n^2+1}}< \frac{1}{\sqrt{n^2}}=\frac{1}{\left|n\right|}=\frac{1}{n}\)

\(\frac{1}{\sqrt{n^2+2}}< \frac{1}{n}\)

\(\frac{1}{\sqrt{n^2+3}}< \frac{1}{n}\)

\(............\)

\(\frac{1}{\sqrt{n^2+n}}< \frac{1}{n}\)

\(\Rightarrow\)\(P=\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\frac{1}{\sqrt{n^2+3}}+...+\frac{1}{\sqrt{n^2+n}}>\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\)

\(=n.\frac{1}{n}=1\)

\(\Rightarrow\)\(P< 1\)

+) Nếu \(n< -1\) ta có : 

\(\frac{1}{\sqrt{n^2+1}}< \frac{1}{\sqrt{n^2}}=\frac{1}{\left|n\right|}=\frac{1}{-n}\)

\(\frac{1}{\sqrt{n^2+2}}< \frac{1}{-n}\)

\(\frac{1}{\sqrt{n^2+3}}< \frac{1}{-n}\)

\(............\)

\(\frac{1}{\sqrt{n^2+n}}< \frac{1}{-n}\)

\(\Rightarrow\)\(P=\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\frac{1}{\sqrt{n^2+3}}+...+\frac{1}{\sqrt{n^2+n}}< \frac{1}{-n}+\frac{1}{-n}+\frac{1}{-n}+...+\frac{1}{-n}\)

\(=n.\frac{1}{-n}=-1\)

\(\Rightarrow\)\(P< -1\)

Vậy nếu \(n>0\) thì \(P< 1\) , nếu \(n< -1\) thì \(P< -1\)

hehe :)) 

tuyết lang
25 tháng 12 2018 lúc 20:44

tuyệt :v

tuyết lang
25 tháng 12 2018 lúc 20:47

à mà hình như bạn lộn dấu kìa :v

Lê Chí Cường
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 6 2016 lúc 13:05

Ta có : \(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\frac{1}{k\left(k+1\right)}\right)=\sqrt{k}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\sqrt{k}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+}}\right)\)

\(=\left(1+\frac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)

Áp dụng : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+}}< 2\)

Vậy ta có điều phải chứng minh.

Trần Anh
Xem chi tiết
Phương Nguyễn Mai
Xem chi tiết
Nguyễn Thị Tường Vy
Xem chi tiết
Phùng Minh Quân
13 tháng 8 2019 lúc 12:22

Đặt P = ... 

* Chứng minh P > 1/2 : 

\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)

Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là: 

\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)

\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)

Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)

\(\Rightarrow\)\(P>\frac{1}{2}\)

* Chứng minh P < 3/4 : 

Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)

\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)

\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)

... 

\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)

\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 ) 

\(\Rightarrow\)\(P< \frac{3}{4}\)