Tìm số hữu tỉ x biết \(\left(x-1\right)^5=-243\)
CÁC BÀI TẬP VỀ LŨY THỪA SỐ HỮU TỈ
Tìm số hữu tỉ x biết:
a, \(8< 2^x< \frac{2^9}{2^5}\)
b, \(27< 81^3:3^x< 243\)
c, \(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(-\frac{2}{5}\right)^2\) CÁC BN NHỚ GIẢI THEO CÁCH CỦA LỚP 7 NHÉ!!! =^.^=
tìm số hữu tỉ x biết :
( x - 1 )5 = -243
( x - 1 )\(^5\) = -243
\(\Rightarrow\) ( x - 1 )\(^5\) = (- 3 )\(^5\)
\(\Rightarrow\) x - 1 = - 3
\(\Rightarrow\) x = -3 + 1
x = -2
Vậy x = -2
( x - 1 )5 = -243
( x - 1 )5 = .......
Tách ( - 243 ) ra
Tìm số hữu tỉ x biết:
a) \(\left(x-1\right)^5=-243\)
b) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
c)\(x-2\sqrt{x}=0\left(x\ge0\right)\)
Tìm các số hữu tỉ x, biết :
a)\(\dfrac{-5}{x-3}\)<0
b)\(\dfrac{3-x}{x^2+1}\)≥0
c)\(\dfrac{\left(x-1\right)^2}{x-2}\)<0
\(a,\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\left(-5< 0\right)\Leftrightarrow x>3\\ b,\dfrac{3-x}{x^2+1}\ge0\Leftrightarrow3-x\ge0\left(x^2+1>0\right)\Leftrightarrow x\le3\\ c,\dfrac{\left(x-1\right)^2}{x-2}< 0\Leftrightarrow x-2< 0\left[\left(x-1\right)^2\ge0\right]\Leftrightarrow x< 2\)
Tìm số tự nhiên x , biết
\(2\cdot\left(x-1\right)^2=8\)
\(\left(2x+1\right)^3=125\)
\(\left(x-2\right)^5=243\)
\(5\left(x-4\right)^2-7=13\)
\(221-\left(3x+2\right)^3=96\)
tìm các số hữu tỉ x , y , z biết rằng
\(x\left(x+y+z\right)=-5;y\left(x+y+z\right)=9;z\left(x+y+z\right)=5\)
Theo đề bài, ta có:
x(x + y + z) = -5; y(x + y + z) = 9; z(x + y + z) = 5
=> (x + y + z)(x + y + z) = -5 + 9 + 5 = 9
=> (x + y + z)2 = 9
=> x + y + z \(\in\){3; -3}
Với x + y + z = 3, ta có:
x = -5 : 3 = \(\frac{-5}{3}\)
y = 9 : 3 = 3
z = 5 : 3 = \(\frac{5}{3}\)
Với x + y + z = -3, ta có:
x = -5 : (-3) = \(\frac{5}{3}\)
y = 9 : (-3) = -3
z = 5 : (-3) = \(\frac{-5}{3}\)
Vậy x = \(\frac{-5}{3}\); y = 3 ; z = \(\frac{5}{3}\) hoặc x = \(\frac{5}{3}\); y = -3 ; z = \(\frac{-5}{3}\).
Tìm các số hữu tỉ x,y,z biết rằng: \(x\left(x+y+z\right)=-5;y\left(x+y+z\right)=9;z\left(x+y+z\right)=5\)
Tìm số hữu tỉ x biết :
\(\left|x-\frac{3}{5}\right|
Tìm các số hữu tỉ x,y,z biết :
\(x\left(x+y+z\right)=\frac{15}{2};y\left(x+y+z\right)=-\frac{5}{2};z\left(x+y+z\right)=20\)
Ta có:
\(x\left(x+y+z\right)=\frac{15}{2}\)
\(y\left(x+y+z\right)=\frac{-5}{2}\)
\(z\left(x+y+z\right)=20\)
=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)
\(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)
\(\left(x+y+z\right)^2=\frac{10}{2}+20\)
\(\left(x+y+z\right)^2=5+20\)
\(\left(x+y+z\right)^2=25\)
=>x+y+z=5 hoặc x+y+x=-5
Với x+y+z=5
=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)
\(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)
\(z.5=20\)=>\(z=\frac{20}{5}=4\)
Với x+y+z=-5
=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)
\(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)
\(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)
Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\); \(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)
Ta có:
\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)
\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)
\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)
Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).