Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O . Trên cung nhỏ BC lấy điểm M ( M khác A và B) . Gọi H , I , K lần lượt là điểm đối xứng của M qua AB , BC , CA
a. CM : H, I , K thẳng hàng
b. Tìm vị trí của M để HK lớn nhất
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Trên cùng nhỏ BC lấy điểm M( M khác B, khác C ). Gọi H,I,K lần lượt là điểm đối xứng của M qua AB, BC, AC. Khi H,I,K thẳng hàng tìm vị trí của điểm M để HK lớn nhất
tg tr ẻ đ ú này bài dễ c ũ n g k h ô n g làm đc
Cho tam giác $ABC$ nhọn nội tiếp đường tròn tâm $O$. Trên cung nhỏ $BC$ lấy điểm $M$ sao cho $AM$ không là đường kính ($M$ không trùng $B, C$). Gọi $I, H, K$ lần lượt là hình chiếu của điểm $M$ trên các đường thẳng $BC, AB, AC$. Chứng minh ba điểm $H,I,K$ thẳng hàng.
mik ko bt lm bài này bn à . mik thông minh lắm mấy bn mới ngu ấy
Cho tam giác ABC nhọn nối tiếp đường tròn tâm O. Trên cung nhỏ BC lấy điểm M sao cho AM không là đường kính (M không trùng B, C). Gọi I, H, K lần lượt là hình chiếu của điểm M trên các đường thẳng BC, AB, AC. Chứng minh ba điểm H, I, K thẳng hàng
góc MKC=góc MIC=90 độ
=>MCKI nội tiếp
=>góc MIK+góc MCK=180 độ
góc MIB+góc MHB=180 độ
=>MIBH nội tiếp
=>góc MIH=góc MBH
góc MIH+góc MIK
=180 độ-góc MCK+góc MBH
=180 độ
=>H,I,K thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Hai đường cao AK và CI của tam giác ABC cắt nhau tại H (K thuộc BC, I thuộc AB).
a) Chứng minh rằng: góc BAK bằng góc BCI.
b) Gọi M là điểm bất kì trên cung nhỏ BC. Các điểm N, P lần lượt là điểm đối xứng với M qua AB, AC. CMR: Tứ giác AHCP nội tiếp đường tròn.
c) Tìm vị trí điểm M để độ dài đoạn thẳng NP lớn nhất.
Cho tam giác nhọn nội tiếp đường tròn tâm . Trên cung nhỏ lấy điểm sao cho không là đường kính ( không trùng ). Gọi lần lượt là hình chiếu của điểm trên các đường thẳng . Chứng minh ba điểm thẳng hàng.
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. H là trực tâm của tam giác. Gọi M là một điểm trên cung BC không chứa điểm A( M không trùng với B và C). Gọi N và P lần lượt là điểm đối xứng của M qua các đường thẳng AB và AC. câu a: chúng minh N, H, P thẳng hàng. câu b: Khi góc BOC = 120 độ, xác định vị trí của điểm M sao cho 1/MB + 1/ MC đạt giá trị nhỏ nhất
Cho tam giác ABC nội tiếp đường tròn (O). M là một điểm trên cung BC không chứa A. Gọi. D, E, F lần lượt là hình chiếu của M trên BC, AC và AB
a) Chứng minh rằng D, E, F thẳng hàng.
b) Gọi I, J, K lần lượt là các điểm đối xứng của M qua D, E, F. Chứng minh rằng I, J, K cùng thuộc một đường thẳng và đường thẳng đó đi qua trực tâm H của tam giác ABC.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), trực tâm H. Giả sử M là một điểm trên cung BC không chứa A. Gọi N, P lần lượt là điểm đối xứng của M qua AB, AC
a. cmr tứ giác AHCP nội tiếp
b. chứng minh ba điểm N, H, P thẳng hàng
Giúp mình với nha. cảm ơn nhiều!
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O Trên cạnh BC lấy điểm d d khác B phẩy C sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm O tại M Gọi E là hình chiếu của M trên AC
a Chứng minh tứ giác CDME nội tiếp đường tròn
b/chứng minh MA x MB = MB x ME
C/Gọi i k lần lượt là trung điểm của AB và de chứng minh EK vuông góc với MK
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề