Tìm các số nguyên x,y thoã mãn: ( 2x + 1 )( y - 5) = 12
Cho x,y,z thoã mãn (z-1)x-y=1 và x+2y=2
Chứng minh rằng \(\left(2x-y\right)\left(z^2-z+1\right)\)=7 tìm tất cả các số nguyên thoã mãn phương trình trên
Các anh chị ơi giúp em với ai đúng em k cho : Tìm các số nguyên x , y thoã mãn y = x - 1/ 2x + 3
\(y=\frac{x-1}{2x+3}\)
\(\Rightarrow2xy+3y=xy-y\)
\(\Rightarrow2xy+3y-xy+y=0\)
\(\Rightarrow xy+4y=0\)
\(\Rightarrow\left(x+4\right)y=0\)
\(\Rightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)
Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).
Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).
Vậy x = y
Tìm các số nguyên dương x, y, z thoã mãn 3^x+2^y=1+2^z
Ta thấy [TEX]y \geq 1[/TEX].
+ Nếu [TEX]y=1[/TEX] thì ta có [TEX]3^x=2^z-1[/TEX].
Xét tính chia hết cho 3 dễ thấy [TEX]z \vdots 2[/TEX]. Đặt [TEX]z=2k (k \in \mathbb{N}^*)[/TEX]
Ta có: [TEX]3^x=2^{2k}-1=(2^k-1)(2^k+1)[/TEX]
Đặt [TEX]2^k-1=3^m, 2^k+1=3^n (m,n \in \mathbb{N}^*; m+n=z) [/TEX]
Ta có: [TEX]3^n-3^m=2 \Rightarrow n=1, m=1 \Rightarrow z=2[/TEX]
[TEX]\Rightarrow z=1[/TEX]. Từ đó ta có bộ [TEX](x,y,z)=(1,1,2)[/TEX]
+ Nếu [TEX]y \geq 2[/TEX] thì ta có [TEX]2^z-2^y=3^x-1 > 0 \Rightarrow z >y[/TEX]
Lại có: [TEX]z>y \geq 2 \Rightarrow 3^x-1 \vdots 4 \Rightarrow x \vdots 2[/TEX]
Khi đó nếu [TEX]y \geq 4[/TEX] thì [TEX]3^x-1 \vdots 16 \Rightarrow x \vdots 4[/TEX]
[TEX]x=4q\Rightarrow 2^z-2^y=81^q-1\equiv 0(\text{mod 5})\Rightarrow 2^z-2^y\vdots 5\Rightarrow 2^y(2^{z-y}-1)\vdots 5[/TEX]
Từ đó [TEX]2^{z-y}-1 \vdots 5 \Rightarrow z-y=4k+2 \Rightarrow z-y \vdots 2 \Rightarrow 2^{z-y}-1 \vdots 3[/TEX]
[TEX]\Rightarrow 3^x-1 \vdots 3[/TEX](mâu thuẫn)
Suy ra [TEX]2 \leq y \leq 3[/TEX].
Nếu [TEX]y=2[/TEX] thì [TEX]3^x+3 =2^z \vdots 3[/TEX](mâu thuẫn)
Nếu [TEX]y=3[/TEX] thì [TEX]3^x+7=2^z[/TEX]. Xét đồng dư với 3 nên [TEX]z \vdots 2[/TEX].
Đặt [TEX]x=2m,z=2n \Rightarrow 2^{2n}-3^{2m}=7 \Rightarrow (2^n-3^m)(2^n+3^m)=7[/TEX]
[TEX]\Rightarrow 2^n-3^m=1,2^n+3^m=7 \Rightarrow n=2,m=1 \Rightarrow x=2,z=4[/TEX]
Vậy [TEX](x,y,z)=(1,1,2)[/TEX] hoặc [TEX](x,y,z)=(2,3,4)[/TEX]
a)chứng minh rằng tích của 4 số nguyên liên tiếp luôn chia hết cho 4
b)tìm các số nguyên x,y thoã mãn
(2x-1).(y+4)=11
Số các cặp số nguyên (x,y) thoã mãn x + y + xy = 3
Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên :
Ta lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)
Bài 4. Tìm các số nguyên x và y thỏa mãn (x+1).( y-2) =5 Bài 5. Tìm các số nguyên x và y thỏa mãn xy -2x + 3y
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
Tìm cặp số nguyên (x;y) thoã mãn:
|x+4|+|y-2|=3
Vì \(\left|x+4\right|\ge0;\left|y-3\right|\ge0\)
mà |x+4| + |y-3| =3 và |x+4| ; |y-3| thuộc Z
\(\Rightarrow\left(\left|x+4\right|;\left|y-3\right|\right)\in\left\{\left(0;3\right)\left(1;2\right)\left(3;0\right)\left(2;1\right)\right\}\)
Tương ứng \(\left(x;y\right)\in\left\{\left(-4;6\right);\left(-3;5\right);\left(-1;3\right);\left(-2;4\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(-4;6\right);\left(-3;5\right);\left(-1;3\right);\left(-2;4\right)\right\}\)
Tìm các cặp số nguyên x, y thỏa mãn: (2x+1)(y-5)=12
(các bạn trình bày cách làm nha, đúng mình tick)
=> 12 chia hết cho 2x+1
=> 2x+1 thuộc Ư(12)={1;2;3;4;6;12;-1;-2;-3;-4;-6;-12}
mà 2x+1 không chia hết 2
=> 2x+1 thuộc -1;1;-3;3
=> x thuộc -1 ; 0 ; -2 ; 1