Những câu hỏi liên quan
Xuan Xuannajimex
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 6 2020 lúc 21:33

\(2\ge a^2+b^2\ge2ab\Rightarrow ab\le1\)

Ta có:

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}=\frac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}-\frac{2}{1+ab}\)

\(=\frac{\left(ab+1\right)\left(a^2+b^2+2\right)-2a^2b^2-a^2-b^2-2}{\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)}=\frac{ab\left(a^2+b^2\right)-2a^2b^2+2ab-a^2-b^2}{\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)}\)

\(=\frac{ab\left(a^2+b^2-2ab\right)-\left(a-b\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}=\frac{\left(ab-1\right)\left(a-b\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\le0;\forall ab\le1\)

\(\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\)

Dấu "=" xảy ra khi \(a=b\)

Min
Xem chi tiết
Dương Văn Chiến
Xem chi tiết
Kiệt Nguyễn
9 tháng 1 2021 lúc 8:42

Áp dụng bất đẳng thức Cauchy-Schwarz dạng phân thức, ta được: \(VT=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)        \(=\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)

Ta cần chứng minh \(\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\ge1\)hay \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)

Đây là bất đẳng thức quen thuộc có nhiều cách chứng minh:

** Cách 1: Áp dụng AM - GM, ta được: \(a^3+a^3+b^3\ge3a^2b\)\(b^3+b^3+c^3\ge3b^2c\)\(c^3+c^3+a^3\ge3c^2a\)

Cộng từng vế ba bất đẳng thức trên

** Cách 2: Giả sử \(a\le b\le c\)

Có: \(a^3+b^3+c^3=a^2b+b^2c+c^2a+\left(c^2-a^2\right)\left(b-a\right)+\left(c^2-b^2\right)\left(c-b\right)\ge a^2b+b^2c+c^2a\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\).

Khách vãng lai đã xóa
Kiệt Nguyễn
9 tháng 1 2021 lúc 9:11

Or the following SOS: 

* Hoặc mạnh hơn với a,b,c thực thỏa mãn \(a+b\ge0,b+c\ge0,c+a\ge0\)

\(a^3+b^3+c^3-a^2b-b^2c-c^2a\)

                                            \(=\frac{\left(a^2+b^2-2c^2\right)^2+3\left(a^2-b^2\right)^2+\Sigma_{cyc}4\left(a+b\right)\left(c+a\right)\left(a-b\right)^2}{8\left(a+b+c\right)}\ge0\)

Khách vãng lai đã xóa
Kiệt Nguyễn
9 tháng 1 2021 lúc 9:40

Hoặc còn 2 kiểu SOS khác (by tth_new)

Giả sử \(c=min\left\{a,b,c\right\}\)

\(VT-VP=\frac{\left(4b+3b-c\right)\left(a-b\right)^2+\left(b+c\right)\left(a+b-2c\right)^2}{4}\ge0\)

Or 

Khách vãng lai đã xóa
Hỏi Làm Gì
Xem chi tiết
MARKTUAN
7 tháng 9 2016 lúc 19:49

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

Hỏi Làm Gì
7 tháng 9 2016 lúc 20:44

Bạn nói rõ hơn được không???

alibaba nguyễn
7 tháng 9 2016 lúc 21:25

Để chừng nào t làm được câu 1 thì t giải giúp cho 1 lần luôn

Dương Hoàng Anh Văn ( Te...
Xem chi tiết
Dương Hoàng Anh Văn ( Te...
Xem chi tiết
Phùng Minh Quân
29 tháng 4 2019 lúc 14:42

\(1)\) \(\frac{1}{a^3+5}+\frac{1}{b^3+5}\le\frac{1}{3a+3}+\frac{1}{3b+3}=\frac{1}{3}\left(\frac{1}{a+1}+\frac{1}{b+1}\right)=\frac{1}{3}\left[\frac{a+b+2}{\left(a+1\right)\left(b+1\right)}\right]\)

\(=\frac{1}{3}\left(\frac{ab+a+b+1}{ab+a+b+1}-\frac{ab-1}{ab+a+b+1}\right)=\frac{1}{3}\left(1-\frac{0}{ab+a+b+1}\right)=\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}ab=1\\a^3=1\\b^3=1\end{cases}\Leftrightarrow a=b=1}\)

Phùng Minh Quân
31 tháng 12 2019 lúc 16:27

2) bđt \(\Leftrightarrow\)\(\left(a-b\right)^2\left(\frac{1}{a}+\frac{1}{b}\right)+\left(a+b-2\right)\left[\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\frac{7}{2}\right]\ge0\) (1) 

(1) đúng do \(a+b\ge2\sqrt{ab}=2\)\(\Leftrightarrow\)\(a+b-2\ge0\)

Dấu "=" xảy ra khi a=b=1

Khách vãng lai đã xóa
lê thị hoài
Xem chi tiết
Ho Nhat Minh
29 tháng 12 2019 lúc 18:07

Ta co:

\(VT=\Sigma_{cyc}\frac{a}{ca+1}=\Sigma_{cyc}\frac{a}{ca+abc}=\Sigma_{cyc}\frac{1}{c+bc}\)

Xet

\(\Sigma_{cyc}\frac{1}{c+bc}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{c}+\frac{1}{bc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{4}\left(ab+bc+ca+a+b+c\right)\)

bdt can chung minh thanh

\(ab+bc+ca+a+b+c\le2\left(a^2+b^2+c^2\right)\)

Ta lai co:

\(a^2+b^2+c^2\ge ab+bc+ca\)

Gio ta can chung minh:

\(a^2+b^2+c^2\ge a+b+c\)

Ta co hai danh gia:

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(1=\sqrt[3]{abc}\le\frac{a+b+c}{3}\le\frac{\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\Rightarrow a^2+b^2+c^2\ge3\)

Suy ra can chung minh:

\(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2-3\right)\ge0\) (đúng)

Dau '=' xay ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
lê thị hoài
29 tháng 12 2019 lúc 15:59

mn giup voi minh can gap lam

Vũ Minh TuấnBăng Băng 2k6Nguyễn Việt LâmPhạm Lan HươngNguyễn Huy Tú Nguyễn Thị Thùy TrâmNo choice teentthbảo phạmHo Nhat Minh

Khách vãng lai đã xóa
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2019 lúc 21:50

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế với vế:

\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)

Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)

Vô Danh Tiểu Tốt
Xem chi tiết
Tran Le Khanh Linh
26 tháng 4 2020 lúc 9:43

Dấu BĐT ngược 1 chút \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Xét hiệu 2 vế của BĐT

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}=\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\)

\(=\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\ge0\)

=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{2}{1+ab}\)

Dấu "=" xảy ra <=> a=b=1

Khách vãng lai đã xóa