Cho S = \(\overline{abc}+\overline{bca}+\overline{cab}\). CMR S không phải là số chính phương
Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng S không phải là số chính phương
S = abc + bca + cab
S = 100a+10b+c+100b+10c+a+100c+10a+b
S=111a+111b+111c
S=111 x (a+b+c)
=> S không phải số chính phương vì a+b+c là các số tự nhiên có 1 chữ số nên a+b+c <111
Chứng minh rằng tổng \(S=\overline{abc}+\overline{bca}+\overline{cab}+\overline{ab}+\overline{bc}+\overline{ca}\) không phải là một số chính phương.
\(S=abc+bca+cab+ab+bc+ca\)
\(=100a+10b+c+100b+10c+a+100c+10a+b+10a+b+10b+c+10c+a\)
\(=122a+122b+122c\)
\(=122\left(a+b+c\right)\)
\(=61.2\left(a+b+c\right)\)
Vì 61 và 2 là các số nguyên tố nên để S là số chính phương thì trước hết a + b + c chia hết cho 61 và 2.
a + b + c > 0 ; mà a+b+c < 28; nên nó không thể chia hết cho 61.
Do đó S không thể là số chính phương.
vào đây nhé: Câu hỏi của phandangnhatminh - Toán lớp 7 - Học toán với OnlineMath
t i c k nhé!! 46457645774745756858768967969689088558768578769
Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\). Chứng minh S không phải là một số chính phương
Giúp nha mình cần gấp
phân tích rồi S = 111(a+b+c) ko biết làm sao nữa
S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111.(a+b+c)
Vì a+b+c là các chữ số tự nhiên nên \(a+b+c\ne111\)
Vậy 111 không phải là số chính phương
Chứng tỏ rằng \(\overline{abc}+\overline{bca}+\overline{cab}\)=S không là số chính phương
s=abc + bca + cab
S = 100a+10b+c+100b+10c+a+100c+10a+b
S= 111a+111b+111c
S= 111(a+b+c)
ma a;b;c <10
nen S k phai la so chinh phuong
1/ Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng: S không phải là số chính phương
2/ Tìm các số có ba chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
3/ Tìm 3 số tự nhiên a, b, c (a > b > c > 0), biết rằng: \(\overline{abc}+\overline{bca}+\overline{cab}=666\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Cho S = \(\overline{abc}+\overline{bca}+\overline{cab}\)
CMR: S không phải là số chính phương
Ta có:
\(S=\overline{abc}+\overline{bca}+\overline{cab}\)
\(\Rightarrow S=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(\Rightarrow S=100a+10b+c+100b+10c+a+100c+10a+b\)
\(\Rightarrow S=111a+111b+111c\)
\(\Rightarrow S=111\left(a+b+c\right)\)
\(\Rightarrow S=37.3\left(a+b+c\right)\)
Giả sử \(S\) là số chính phương thì S phải chứa \(37\) mủ với số chẵn
\(\Rightarrow3\left(a+b+c\right)⋮37\)
\(\Rightarrow a+b+c⋮37\)
Điều này không xảy ra vì \(1\le a+b+c\le27\)
Vậy \(S=\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
Chứng tỏ
\(A=\overline{abc}+\overline{cab}+\overline{bca}\)
Không phải là số chính phương
Ta có:\(A=\overline{abc}+\overline{cab}+\overline{bca}=a.100+b.10+c+c.100+a.10+b+b.100+c.10+a\)
\(=a.111+b.111+c.111=\left(a+b+c\right)111\)
Để A là số chính phương thì khi phân tích A ra số nguyên tố các thừa số đều mũ chẵn
Mà \(A=\left(a+b+c\right)111=\left(a+b+c\right).3.37\)
=>Để A là số chính phương thì a+b+c=3.37<=>a+b+c=111,mà \(a+b+c\le9\left(a;b;c\inℕ\right)\)
Vậy không có a;b;c thỏa mãn hay A không là số chính phương
Cho M=\(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương. Chứng minh rằng M không là số chính phương
M=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b) = 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy M không phải là số chính phương
Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng Minh Rằng S không phải là số chính phương
\(S=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)
Vì \(0< a+b+c\le27\) nên \(a+b+c⋮̸37\). Mặt khác \(\left(3;37\right)=1\) nên \(3\left(a+b+c\right)⋮37\Rightarrow S\) không phải là số chính phương.