Tính số đo góc A của tam giác ABC cân tại A biết rằng có một điểm D thuộc cạnh AB sao cho tam giác ADC cân tại D, tam giác BCD cân tại C
Tam giác ABC cân tại A. Điểm D thuộc cạnh AB sao cho tam giác ACD cân tại D và tam giác BCD cân tại C. Tính góc BAC
Cho tam giác ABC cân tại A có góc A=20 độ. Vẽ điểm D trên nửa mặt phẳng bờ AC không chứa điểm B sao cho tam giác BCD cân tại C và góc BCD= 140 đô. Tính số đo góc ADC
cho tam giác abc cân tại A có góc a bằng 20 độ.Vẽ điểm D trên nmp bờ AC ko chứa B sao cho tam giác BCD cân tại C và góc BCD = 140 độ .Tính ADC ?
vi tam giac ABC cân tại A => AB = AC
tam giac BCD đều BC = DC
xét tam giác ABD và tam giac ACD
AB = AC (cmt)
BD = DC (cmt)
AD chung
từ 3 điều trên => tam giác ABD = tam giác ACD (c.c.c)
=> góc ADB = góc ADC => là tia phân giác của góc BCD
=> góc BDA = BDC : 2 = 60o : 2 = 30o
đ/s...
k cho minh nha
chúc bạn hoc tốt
1. Cho tam giác ABC cân tại A có góc A = 20 độ. Vẽ D trên nửa mặt phẳng bờ AC không chứa B sao cho tam giác BCD cân tại C và góc BCD = 140 độ. Tính góc ADC
2. Cho tam giác ABC cân tại A có góc BAC = 108 độ. D là điểm nằm trong tam giác ABC sao cho góc DBC = 12 độ, góc DCB = 18 độ. tính góc ADB
3. Cho tam giác ABC cân tại A, A = 100 độ. M nằm trong tam giác ABC sao cho góc MBC = 30 độ, góc MCB = 20 độ. Tính góc MAC
4. Cho tam giác ABC vuông tại A, vẽ AH vuông góc vs BC tại. Biết BH - HC = AC. tính các góc ABC, ACB
Bài 1: Cho tam giác ABC cân tại A biết rằng trên cạnh BC có điểm D sao cho BD=AB tính số đo góc A
Bài 2: Cho tam giác ABC có 2 đường cao BD, CE cắt nhau tại H. Biết AB=CH, tính số đo góc ACB
Bài 3: Cho tam giác ABC có AH, AM lần lượt là đường cao, đường trung tuyến của tam giác. Biết góc BAH=góc HAM=góc MAC=góc \(\frac{\widehat{BAC}}{3}\)
Bài 4: Cho tam giác ABC cân tại A có góc A=100o . Trên tia AB lấy điểm D sao cho AD=BC. Tính góc ACD
Bài 5: Cho tam giác ABC có góc B=60o , góc C=75o . Trên tia đối tia BC lấy điểm M sao cho BC=2BM. Tính số đo các góc M
Bài 1: Cho tam giác ABC cân tại A. Kẻ \(BH\perp AC\left(H\in AC\right)\), kẻ \(CK\perp AB\left(K\in AB\right)\). Chứng minh rằng AH = AK
Bài 2: Cho tam giác ABC cân tại A. Gọi D là trung điểm của BC. Chứng minh rằng AD là tia phân giác của góc A.
Bài 3: Cho tam giác ABC cân tại A và tam giác đều BCD (D và A nằm phía đối với BC). Tính số đo góc BDA.
Bài 4: Tam giác ABC cân tại A có \(\widehat{A}=100^o\) . Lấy các điểm D và E trên cạnh BC sao cho BD = BA, CE = CA. Tính số đo góc DAE.
Bài 5: Cho tam giác cân AOB (OA = OB). Trên tia đối của tia OB lấy điểm C sao cho OB = OC. Tính số đo góc BAC.
Vẽ hình, viết GT, KL và trình bày cách làm giúp mk nhé!!!
Cho tam giác ABC vuông, cân tại A. Trên đường thẳng AB lấy điểm D sao cho BD = BC ( D và A khác phía so vs B ). Tính số đo các góc của tam giác ADC
Xét tam giác ABC vuông cân tại A có:
\(\widehat{ABC}=\widehat{ACB}=\left(180^0-90^0\right):2=45^0\)
Xét tam giác BDC có:
\(BD=BC\left(gt\right)\)
=> Tam giác BDC cân tại B
=> \(\widehat{BDC}=\widehat{BCD}\)
Mà \(\widehat{ABC}=\widehat{BDC}+\widehat{BCD}\)(Tính chất góc ngoài tam giác)
\(\Rightarrow45^0=2.\widehat{BDC}=2\widehat{BCD}\)
\(\Rightarrow\widehat{BCD}=\widehat{BDC}=22,5^0\)
Ta có: \(\widehat{ACD}=\widehat{BCD}+\widehat{ACB}=45^0+22,5^0=67,5^0\)
Vậy số đo 3 góc tam giác ABC là: \(\widehat{DAC}=90^0,\widehat{ADC}=22,5^0,\widehat{ACD}=67,5^0\)
cho tam giác abc vuông tại a với ab=15cm và bc =25cm
a.tính độ dài cạnh ac? so sánh góc b và góc c
b.trên tia đối của tia ab lâý điểm d sao cho ab=ad.chuưngs tam giacs abc=tam giacs adc,tưf ddos suy ra tam giác bcd cân
a: AC=20cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
1) Vẽ tam giác ABC đều có cạnh là 3 cm . Vẽ điểm D sau B là trung điểm của CD tính số đo các góc của tam giác ABD
2) Vẽ tam giác ABC cân tại B có góc B = 50o và AB = 4cm. Nêu cách vẽ. Tính số đo còn lại của tam giác đó
3) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh HB = HC
b) Chứng minh góc BAH = góc CAH
c) Kẻ HD thuộc AB ( D thuộc AB)
Kẻ HE thuộc AC (E thuộc AC)
Chứng minh tam giác HDE là tam giác cân