cho tam giác ABC vuông tại A , AH là đường cao .M, Nlà trung điểm của AH,BH.C/M CM vuông góc với AN
cho tam giác abc vuông tại a đường cao ah M,N lần lượt là trung điểm của AH và BH O là giao điểm của AN và CM.CMR:AN vuông góc với Cm và AH2=4MC.MO
Cho tam giác ABC vuông tại A đường cao AH gọi M và N lần lượt là trung điểm AH và BH gọi O là giao điểm AN với CM. Chứng minh
a) AN vuông góc với CM
b) AH^2= 4MC.MO
Cho tam giác ABC vuông tại A đường cao AH gọi M và N lần lượt là trung điểm AH và BH gọi O là giao điểm AN với CM. Chứng minh
a) AN vuông góc với CM
b) AH^2= 4MC.MO
Cho tam giác ABC cân tại A. Dựng đường cao AH. Dựng HD vuông góc AC và CM // BD (M thuộc AC). a) Chứng minh rằng M là trung điểm của CD. b) Gọi N là trung điểm HD. Tia MN cắt AH tại E. Chứng minh rằng ME vuông góc AH. c) Chứng minh rằng AN vuông góc BD. (Không sử dụng công thức đường trung bình)
-Em ơi hình như đề bài sai rồi ấy ( C trùng với M).
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là trung điểm của AH, N là trung điểm của HC.
Cminh: BM vuông góc với AN
Tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm AH và BH. Gọi O là giao điểm AN với CM. C/mMN Vuông góc vs ac
Xét ΔHAB có
M là trung điểm của AH(gt)
N là trung điểm của BH(gt)
Do đó: MN là đường trung bình của ΔHBA(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AB và \(MN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MN\(\perp\)AC(đpcm)
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H. Gọi K là trung điểm AC, kẻ Ax vuông góc AH cắt HK tại D.
a) CM tứ giác AKHB to hình thang
b) CM tứ giác ADHB là hình bình hành
c) kẻ HN là đường cao tam giác AHB. Gọi I là trung điểm AN, lấy M đối xứng H qua B. CM: MN vuông góc với IH
a: ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔCAB có
H,K lần lượt là trung điểm của CB,CA
=>HK là đường trung bình của ΔCAB
=>HK//AB và \(HK=\dfrac{AB}{2}\)
Xét tứ giác AKHB có KH//AB
nên AKHB là hình thang
b: Ta có: AD\(\perp\)AH
BC\(\perp\)AH
Do đó: AD/BC
=>AD//BH
Xét tứ giác ADHB có
AD//HB
AB//HD
Do đó: ADHB là hình bình hành
Cho tam giác ABC vuông tại A ,đường cao AH . gọi M và N lần lần lượt là trung điểm cua các đoạn thẳng AH và BH. CMR CM vuông góc với AN
CHO TAM GIÁC ABC VUÔNG TẠI A, AH LÀ ĐƯỜNG CAO. M LÀ TRUNG ĐIỂM AH. ĐƯỜNG THẲNG VUÔNG GÓC VỚI BC TẠI B CẮT CM Ở D. CMR TAM GIÁC DAB CÂN
cho tam giác ABC vuông tại A , đường cao AH. Qua trung điểm M của cạnh AC kẻ MN vuông góc với BC tại N . Gọi K là trung điểm của A.CM:BK vuông góc với AN