A= \(\frac{5n+17}{n+3}+\frac{-3n}{n+3}+\frac{2n+9}{n+3}+\frac{-4n-23}{n+3}\)
Tìm n để biểu thức sau là số nguyên :
\(A=\frac{2n+1}{n+2}-\frac{n+1}{n+2}+\frac{3n+5}{2n+4}+\frac{4n+6}{3n+6}-\frac{10n+12}{5n+10}-\frac{12n+3}{4n+8}\)
1) lim \(\frac{3n^2+5n+4}{2-n^2}\)
2) lim \(\frac{2n^3-4n^2+3n+7}{n^3-7n+5}\)
3) lim \(\left(\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1}\right)\)
4) lim \(\frac{1+3^n}{4+3^n}\)
5) lim \(\frac{4.3^n+7^{n+1}}{2.5^n+7^n}\)
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)
Tìm số nguyên n để biểu thức : \(\frac{2n+9}{n+3}+\frac{5n+17}{n+3}-\frac{3n}{n+3}\)có giá trị nguyên.
Ta có : \(\frac{2n+9}{n+3}+\frac{5n+17}{n+3}-\frac{3n}{n+3}=\frac{2n+9+5n+17-3n}{n+3}\)
\(=\frac{4n+26}{n+3}\)
\(=4+\frac{14}{n+3}\)
Để biểu thức có giá trị nguyên thì \(\frac{14}{n+3}\) có giá trị nguyên \(\Rightarrow\)14 chia hết cho n+3
=>n+3 là ước của 14 là -1;1;-2;2;7;-7;-14;14
-Nếu n+3=-1 thì n=-4,khi đó A=-10 (thỏa mãn)
-Nếu n+3=1 thì n=-2,khi đó A=18 (thỏa mãn)
-Nếu n+3=2 thì n=-1,khi đó A=11 (thỏa mãn)
-Nếu n+3=-2 thì n=-5,khi đó A=-3 (thỏa mãn)
-Nếu n+3=7 thì n=4, khi đó A=6 (thoả mãn)
-Nếu n+3=-7 thì n=-10,khi đó A=2 (thỏa mãn)
-Nếu n+3=14 thì n=11,khi đó A=5 (thỏa mãn)
-Nếu n+3=-14 thì n=-15,khi đó A=3 (thỏa mãn).
Vu Thi Nhuongxét Th theo cột nhanh hơn làm vậy lâu lắm
1, tìm tất cả số nguyên để phân số tối giản:
\(\frac{18n+3}{21n+7}\)và \(\frac{2n+7}{5n+2}\)
2, tìm số nguyên n để các phân số sau là số nguyên:
A=\(\frac{n^2+4n-2}{n+3}\)
B=\(\frac{4n-3}{3n-1}\)
C=\(\frac{n^2+3n-3}{x-5}\)
Chứng minh rằng các phân số sau tối giản với mọi số tự nhiên:
a, \(\frac{n+1}{2n+3}\)
b, \(\frac{\text{2n+3}}{\text{4n+8}}\)
c, \(\frac{3n+2}{5n+3}\)
Chứng minh rằng hai phân số sau tối giản với mọi số tự nhiên n:
a) \(\frac{n+1}{2n+3}\).
b) \(\frac{2n+3}{4n+8}\).
c) \(\frac{3n+2}{5n+3}\).
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
a) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.
chứng minh rằng hai phân số sau tối giản với mợi số tự nhiên n:
a) \(\frac{n+1}{2n+3}\)
b)\(\frac{2n+3}{4n+8}\)
c)\(\frac{3n+2}{5n+3}\)
Tham khảo nha :
Chứng minh rằng 2 phân số tối giản vs mọi số tự nhiên n :
...p/s
Cho biểu thức : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
tìm n để các phân số sau có giá trị là 1 số nguyên
a)\(\frac{n+9}{n-6}\)
b)\(\frac{4n+1}{2n+3}\)
c)\(\frac{n-3}{3n-1}\)
d)\(\frac{5n+2}{17}\)
e)\(\frac{7n+1}{15}\)
a)để n+9/n-6 thuộc Z
=>n+9 chia hết n-6
=>n-6+15 chia hết n-6
=>15 chia hết n-6
=>n-6 thuộc {1,-1,3,-3,5,-5,15,-15}
=>n thuộc {7,5,9,3,11,1,21,-9}
b)để 4n+1/2n+3 thuộc Z
=>4n+1 chia hết 2n+3
<=>[2(2n+3)-5] chia hết 2n+3
=>5 chia hết 2n+3
=>2n+3 thuộc {1,-1,5,-5}
=>2n thuộc {-2,-4,2,-8}
=>n thuộc {-1,-2,1,-4}
c,d tương tự