cmr 2 số sau là số nguyên tố
a]2n+5 và 3n+7
b]2n+3 và 3n+4
CMR các số sau là số nguyên tố cùng nhau
a,2n+3 và 3n+4
b,n+7 và 2n+13
c,5n-8 và 3n-5
cmr 2 số sau là số nguyên tố
2n+3 và 3n+4
gọi d=(2n+3; 3n+4)
=> 3(2n+3) - 2(3n+4)= 1 chia hết cho d
=> d =1
vậy 2 số là 2 số nguyên tố cùng nhau
cmr 2 số sau là số nguyên tố
2n+3 và 3n+4
a) gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
CMR hai số sau nguyên tố cùng nhau
a) 3n + 4 và 2n + 3
b) 2n +11 và n + 5
a) Gọi ƯC(3n + 4; 2n + 3) = d
=> 3n + 4 ⋮ d => 2(3n + 4) ⋮ d hay 6n + 8 ⋮ d (1)
=> 2n + 3 ⋮ d => 3(2n + 3) ⋮ d hay 6n + 9 ⋮ d (2)
Từ (1) và (2) => 6n + 9 - 6n - 8 ⋮ d
hay 1 ⋮ d => d ∈ Ư(1) = 1
=> d = 1 hay ƯC(3n + 4; 2n + 3) = 1
Vậy 3n + 4 và 2n + 3 là 2 số nguyên tố cùng nhau
b) làm tương tự ( nhân 2 vào vế n + 5 )
a) Đặt (3n + 4, 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}3n+4⋮d\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\\2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\end{cases}}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
Gọi
ƯCLN(3n+4;2n+3)=d
Ta có:
3n+4 chia hết cho d
2n+3 chia hết cho d
=>3(2n+3)-2(3n+4) chia hết cho d
=>1 chia hết cho d
Vậy .........
Ta có:
2n+11 chia hết cho d
n+5 chia hết cho d
=>2n+11-2(n+5) chia hết cho d
=>1 chia hết cho d
Vậy.........
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a,3n+4 và 3n+7
b,2n+3 và 4n+8
c,n và n+1
d,2n+5 và 4n+12
e,2n+3 và 3n+5
Giúp mình với ạ,mình đang cần gấp!!!
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
CMR:2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
Với n là số tự nhiên. Chứng minh các cặp số sau nguyên tố cùng nhau
a) 2n + 3 và 3n + 4
b) 3n + 4 và 4n + 5
a) Gọi d=(2n+3; 3n+4)
Ta có: 2n+3 và 3n+4 chia hết cho d
--> 6n+9 và 6n+8 chia hết cho d
--> (6n+9)-(6n+8) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n+3 và 3n+4 nguyên tố cùng nhau
a: Gọi d là UCLN của 2n+3 và 3n+4
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)
=> UCLN(2n+3;3n+4)=1
hay 2n+3;3n+4 là hai số nguyên tố cùng nhau
a) Gọi d là UCLN (2n+3;3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
Vậy 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
b) Gọi d là UCLN(3n+4;4n+5)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\4n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12n+16⋮d\\12n+15⋮d\end{matrix}\right.\)
\(\Rightarrow12n+16-12n-15⋮d\Rightarrow1⋮d\)
Vậy 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau
Với số tự nhiên n,chứng tỏ các cặp số sau là số nguyên tố cùng nhau.
a)2n + 3 và 3n + 5 c,3n + 4 và 4n + 5
b)5n + 3 và 7n + 5 d,4n + 1 và 6n + 2
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1