tìm x,y
\(\frac{x}{7}=\frac{6}{21}\)
\(\frac{-5}{y}=\frac{20}{28}\)
Tìm số nguyên x và y , biết :
a) \(\frac{x}{7}\) = \(\frac{6}{21}\)b) \(\frac{-5}{y}\)= \(\frac{20}{28}\)
Hoàng Thị Thanh Trúc
a,
\(\frac{x}{7}=\frac{6}{21}\Rightarrow x=\frac{6.7}{21}=2\)
b,
\(\frac{-5}{y}=\frac{20}{28}\Rightarrow y=\frac{\left(-5\right).28}{20}=-7\)
Bài 1: Điền số thích hợp vào ô vuông:
a) \(\frac{7}{ }=\frac{21}{-39}\)
B) \(\frac{ }{8}=\frac{-28}{32}\)
Bài 2 : Tìm các số nguyên x và y, biết :
a) \(\frac{x}{7}=\frac{6}{21}\) b) \(\frac{-5}{y}=\frac{20}{28}\) c) \(\frac{-4}{8}=\frac{x}{-10}\)
a. -13
b.-7
bài 2 :
a. x=2
b. y=-7
c. x=5
Tìm x , y , z
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x + y - 2z = 28
b) \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 186
b. Câu hỏi của Nguyen Hai Bang - Toán lớp 7 - Học toán với OnlineMath
Tìm các số nguyên x và y,biết:
a)\(\frac{x}{7}=\frac{6}{21}\) b)\(\frac{-5}{y}=\frac{20}{28}\)
\(\frac{x}{7}=\frac{6}{21}\Rightarrow x=\frac{6.7}{21}=\frac{42}{21}=2\)
\(-\frac{5}{y}=\frac{20}{28}\Rightarrow y=-\frac{5.28}{20}=-\frac{140}{20}=-7\)
\(\frac{2}{7}=\frac{6}{21}\)
\(\frac{-5}{-7}=\frac{5}{7}=\frac{20}{28}\)
a. x/7 = 6/21
=> x.21=6.7
=> x.21=42
=> x=42:21
=> x=2
b. -5/y=20/28
=> -5/y=5/7
=> -5.7=5.y
=> -35=5.y
=> y=-35:5
=> y=-7
Cho các số tự nhiên x,y,z,t nhỏ nhất thỏa mãn \(\frac{x}{y}=\frac{5}{14},\frac{y}{z}=\frac{21}{28},\frac{z}{t}=\frac{6}{11}\). Tìm x,y,x,t
Giúp mình nha
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5 x + y - 2z = 28
b)\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y -z = 125
c)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z = 49
d) \(\frac{x}{2}=\frac{y}{3}\)và xy = 54
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{2x}{30}=\frac{3y}{60};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3y}{60}=\frac{z}{28}\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau:
đến đây dễ rồi bạn tự lm tiếp nhé
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng dãy tỉ số bằng nhau:
.............
d) Ta có:
\(xy=54\Rightarrow x=\frac{54}{y}\)
\(\frac{x}{2}=\frac{\frac{54}{y}}{2}=54.\frac{2}{y}=\frac{108}{y}\)
Ta lại có:\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{108}{y}=\frac{y}{3}\Rightarrow y^2=324\Leftrightarrow y=18\)
thay vào \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2}=\frac{18}{3}\Leftrightarrow x=12\)
Vậy.....
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) \(\frac{x}{2}=\frac{y}{2}\)và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b) \(\frac{x}{3}=\frac{y}{4}\); \(\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
a) x/5=y/2
= x+y/5+2=21/7=3
=> x/5=3=>x=15
y/2=3=>x=6
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
Tìm x biết:
a/ (152\(\frac{2}{4}\) - 148\(\frac{3}{8}\)) : 0,2= x:0,3
b/ (85\(\frac{7}{30}\) -83\(\frac{5}{18}\) ) : 2\(\frac{2}{3}\) = 0,01.x:4
c/ \(\frac{x-1}{x+5}=\frac{6}{7}\)
d/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
e/ \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}và3x+2y-2z=186\)
a)
\(\Rightarrow\left(\frac{305}{2}-\frac{1187}{8}\right):\frac{1}{5}=x:\frac{3}{10}\)
\(\Rightarrow\frac{33}{8}.5=x:\frac{3}{10}\)
\(\Rightarrow x=\frac{33}{8}.5.\frac{3}{10}\)
\(\Rightarrow x=\frac{99}{16}\)
Bài 1: Tìm x,y,z biết rằng.
a)\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b)\(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}va\)2x+3y-z=124
c)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z