x2+x+1 chia hết cho x+1
3x-8 chia hết cho x-4
1)a) 21 chia hết (x +7)
b)(3x -40) chia hết cho(x+5)
c)-55 chia hết cho(x+2)
d) (x2+x+1) chia hết cho (x+1)
e)(3x-8) chia hết cho (x-4)
f) (x2+2x -7 )chia hết cho (x+2)
21 chia hết cho x + 7
x + 7 thuộc Ư(21) = {-21; -7 ; -3 ; - 1 ; 1 ; 3 ; 7 ; 21}
x + 7 = -21 => x = -28
x + 7 = -7 => x = -14
x + 7 = -3 => x = -10
x+ 7 = -1 => x = -8
x + 7 = 1 => x = -6
x + 7 = 3 => x = -4
x + 7 = 7 => x = 0
x + 7 = 21 => x = 14
Vậy x thuộc {-28 ; -14 ; -10 ; -8 ;-6 ; -4 ; 0 ; 14}
3x - 40 chia hết cho x + 5
3x + 15 - 55 chia hết cho x + 5
Mà 3x + 15 chia hết cho x + 5
Nên -55 chia hết cho x + 5
x + 5 thuộc Ư(-55) = {-55 ; -11 ; -5 ; -1 ; 1 ; 5 ; 11 ; 55}
x + 5 = -55 => x = -60
x + 5 =-11 => x= -16
x + 5 = -5 => x= -10
x + 5 = -1 => x= -6
x + 5 = 1 => x =-4
x + 5 = 5 => x = 0
x + 5 = 11 => x = 6
x + 5 = 55 => x = 50
Vậy x thuộc {-60 ; -16 ; -10 ; -6; -4 ; 0 ; 6 ; 50}
-55 chia hết cho x+ 2
=> x + 2 \(\in\) Ư(-55) = {-55 ; -11 ; -5 ; -1 ; 1 ; 5 ; 11 ; 55}
x + 2 = -55 => x = -57
x + 2 =-11 => x= -13
x + 2 = -5 => x = -7
x + 2 = -1 => x = -3
x + 2 = 1 => x= -1
x + 2 = 5 => x = 3
x + 2 = 11 => x = 9
x + 2 = 55 => x = 53
Vậy x thuộc {-57 ; -13 ; -7 ; -3 ; -1 ; 3 ; 9 ; 53}
1. Tìm xeZ :
a)x+1 chia hết cho 1-x
b)x^2+4 chia hết cho x+2
c) 13x chia hết cho x-1
2. tìm x,y eZ :
a) xy + 3x - y = 6
b) xy - x - y = 2
Tìm x thuộc Z sao cho: a) 2x + 3 chia hết cho x; b) 8x + 4 chia hết cho 2x - 1; c*) x2 - 5x + 7 chia hết cho x- 5
Tìm x thuộc Z sao cho:
a) 2x + 3 chia hết cho x;
b) 8x + 4 chia hết cho 2x - 1;
c) x 2 - 5 x + 7 chia hết cho x- 5.
TÌM X THUỘC Z
(x-3)chia hết cho (x-8)
(x+2)chia hết cho (x-1)
(x-3)chia hết cho(x-8)
(x-2)chia hết cho(x-4)
(x-1)chia hết cho(x-4)
Ta có: x - 3 = (x - 8) + 5
Do x - 8 \(⋮\)x - 8
Để x - 3 \(⋮\)x - 8 thì 5 \(⋮\)x - 8 => x - 8 \(\in\)Ư(5) = {1; 5; -1; -5}
Lập bảng :
x-8 | 1 | 5 | -1 | -5 |
x | 9 | 13 | 7 | 3 |
Vậy ...
câu sau tương tự
\(x+2⋮x-1\)
\(=>x-1+3⋮x-1\)
\(=>3⋮x-1\)
\(=>x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Nên ta có bảng sau :
( Tự lập )
1.Tìm số nguyên x
a,2x-5 chia hết cho x-1
b,3x+4 chia hết cho x-3
c,x-2 là ước của x2+8
2,Tìm x=Z
a,3x+2 chia hết cho x-1
b,x2+2x-7 chia hết cho x+2
3,Tìm cặp số nguyên x,y
a,(x-1).(y+1)=5
b,x.(y+2)= -8
Làm ơn mn giải nhanh giúp mình ngày mai mình phải nộp r!
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
Tìm x biết
1. x + 9 chia hết cho x + 7
2. x + 10 chia hết cho x + 1
3 . x - 15 chia hết cho x + 2
4. x + 20 chia hết cho x + 2
5 . 4x + 3 chia hết cho x - 2
6 . 3x + 9 chia hết cho x + 2
7 . 3x + 16 chia hết cho x + 1
8 . 4x + 69 chia hết cho x + 5
5.
$4x+3\vdots x-2$
$\Rightarrow 4(x-2)+11\vdots x-2$
$\Rightarrow 11\vdots x-2$
$\Rightarrow x-2\in \left\{1; -1; 11; -11\right\}$
$\Rightarrow x\in \left\{3; 1; 13; -9\right\}$
6.
$3x+9\vdots x+2$
$\Rightarrow 3(x+2)+3\vdots x+2$
$\Rightarrow 3\vdots x+2$
$\Rightarrow x+2\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow x\in \left\{-1; -3; 1; -5\right\}$
7.
$3x+16\vdots x+1$
$\Rightarrow 3(x+1)+13\vdots x+1$
$\Rightarrow 13\vdots x+1$
$\Rightarrow x+1\in \left\{1; -1; 13; -13\right\}$
$\Rightarrow x\in\left\{0; -2; 12; -14\right\}$
8.
$4x+69\vdots x+5$
$\Rightarrow 4(x+5)+49\vdots x+5$
$\Rightarrow 49\vdots x+5$
$\Rightarrow x+5\in\left\{1; -1; 7; -7; 49; -49\right\}$
$\Rightarrow x\in \left\{-4; -6; 2; -12; 44; -54\right\}$
** Bổ sung điều kiện $x$ là số nguyên.
1. $x+9\vdots x+7$
$\Rightarrow (x+7)+2\vdots x+7$
$\Rightarrow 2\vdots x+7$
$\Rightarrow x+7\in \left\{1; -1; 2; -2\right\}$
$\Rightarrow x\in \left\{-6; -8; -5; -9\right\}$
2. Làm tương tự câu 1
$\Rightarrow 9\vdots x+1$
3. Làm tương tự câu 1
$\Rightarrow 17\vdots x+2$
4. Làm tương tự câu 1
$\Rightarrow 18\vdots x+2$
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
8 chia hết cho x và x >0
12 chia hết cho x và x<0
-8 chia hết cho x và 12 chia hết cho x
x chia hết cho 4 x chia hết cho -6 và -20<x<-10
x chia hết cho -9 x chia hết cho 12 và 20<x<50
(làm đc 1 like)
{ 1;2;4;8}
{-1;-2;-3;-4;-6;-12}
{-1;-2;-4;1;2;4}
{-18;-12}
{-36;36}
Câu cuối chỉ 36 thôi nhé, không có -36 đâu, thừa đó
danh co ti tuoi yeu moi chang duong nha bao viec